Stateful PCE for P2MP LSP

draft-palle-pce-stateful-pce-p2mp-04 draft-palle-pce-stateful-pce-initiated-p2mp-lsp-03

Udayasree Palle (Huawei) Dhruv Dhody (Huawei)

Yosuke Tanaka (NTT) Yuji Kamite (NTT)

Zafar Ali (Cisco)

<u>Updates in the Draft</u>

Capability Advertisement

Passive Stateful PCE

S₂LS

Co-author

- 3 new bits added to STATEFUL-PCE-CAPABILITY TLV
 - N (P2MP-CAPABILITY)
 - M (P2MP-LSP-UPDATE-CAPABILITY)
 - P (P2MP-LSP-INSTANTIATION-CAPABILITY)
- Granular control over the capability advertisement

- PCReq / PCRep with LSP object
 - New section for these messages
 - Use of LSP objects as the only change
 - RBNF added

- Source to Leaves
- Name change S2LS

• Zafar has joined in the effort.

Next Steps

No pending comments!

Draft(s) can benefit from more feedback and reviews from the WG.

Good base to be worked on by the WG

•WG adoption call?

Backup Slides

Protocol Extension

Capability Advertisement

- New bits in Stateful PCE Capability TLV [I-D.ietf-pcestateful-pce]
- Also via IGP auto discovery

LSP Object

- New Flags "C P2MP (N) and Fragmentation (F) bits
- PLSP-ID identify a (full) P2MP TE LSP uniquely.

P2MP-LSP-IDENTIFIER TLV

- Identify RSVP signaled P2MP LSP-ID
- IPv4 and IPv6

S2LS (Source to Leaves)

- Report state of one or more leaves encoded within the END-POINTS object.
- O in LSP operational
 status of the full
 P2MP TE LSP &
 O in S2LS the
 operational
 status of a group
 of leaves
 encoded within
 the END-POINTS
 object.

No change in operations (from P2P)

LSP state synchronization

LSP delegation

LSP update

PCEP Message Extension

```
<PCUpd Message> ::= <Common Header>
<PCRpt Message> ::= <Common Header>
                                                                             <update-request-list>
                  <state-report-list>
Where:
                                                        Where:
<state-report-list> ::= <state-report>
                                                        <update-request-list> ::= <update-request>
                      [<state-report-list>]
                                                                                   [<update-request-list>]
<state-report> ::= [<SRP>]
                                                        <update-request> ::= <SRP>
                    <LSP>
                                                                              <LSP>
                    <end-point-path-pair-list>
                                                                              <end-point-path-pair-list>
                    <attribute-list>
Where:
                                                     <attribute-list>
                                                        Where:
<end-point-path-pair-list>::=
                   [<END-POINTS>]
                                                        <end-point-path-pair-list>::=
                   [<S2LS>1
                                                                         [<END-POINTS>]
                   <path>
                                                                         <path>
                   [<end-point-path-pair-list>]
                                                                         [<end-point-path-pair-list>]
<path> ::= (<ERO>|<SERO>)
                                                        <path> ::= (<ERO>|<SERO>)
           [<RRO>]
                                                                    [<path>]
           [<path>]
                                                        <attribute-list> is defined in [RFC5440] and
<attribute-list> is defined in [RFC5440] and
                                                         extended by PCEP extensions.
extended by PCEP extensions.
```

PCEP Message Extension

```
<PCReg Message>::= <Common Header>
                  <reguest>
where:
<request>::= <RP>
            <end-point-rro-pair-list>
                                                                  <PCRep Message>::= <Common Header>
             [<LSP>]
                                                                                       <response>
             [<0F>]
             [<LSPA>]
                                                                  <response>::=<RP>
            [<BANDWIDTH>]
                                                                                 [<end-point-path-pair-list>]
            [<metric-list>]
                                                                                 [<NO-PATH>]
            [<IRO>]
                                                                                 [<attribute-list>]
             [<LOAD-BALANCING>]
                                                                  where:
where:
<end-point-rro-pair-list>::=<END-POINTS>[<RRO-List>] [<BANDWIDTH>]
                           [<end-point-rro-pair-list>]
                                                                  <end-point-path-pair-list>::=
                                                                                    [<END-POINTS>]<path>[<end-point-path-pair-list>]
<RRO-List>::=<RRO>[<BANDWIDTH>] [<RRO-List>]
<metric-list>::=<METRIC>[<metric-list>]
                                                                  <path> ::= (<ERO>|<SERO>) [<path>]
                                                                  <attribute-list>::=[<LSP>]
                                                                                       [<OF>]
                                                                                       [<LSPA>]
                                                                                       [<BANDWIDTH>]
                                                                                       [<metric-list>]
                                                                                       [<IRO>]
```

Leaf Type & Operational Status

The P2MP END-POINTS object for specifying address of P2MP leaves are grouped based on leaf types.

New leaves to add (leaf type = 1) Old leaves to remove (leaf type = 2) Old leaves whose path can be modified/reoptimized (leaf type = 3) Old leaves whose path must be left unchanged (leaf type = 4)

When reporting the status of a P2MP TE LSP, the destinations are grouped in END-POINTS object based on the operational status (O field in S2LS object) and leaf type (in END-POINTS). This way the leaves that share the same operational status are grouped together!

- For reporting the status of delegated P2MP TE LSP, leaf-type = 3, where as for non-delegated P2MP TE LSP, leaf-type = 4 is used.
- For delegated P2MP TE LSP configuration changes are reported via PCRpt message. For example, adding of new leaves END-POINTS (leaf-type = 1) is used where as removing of old leaves (leaf-type = 2) is used.

PCE Initiated P2MP LSP

<path> ::= (<ERO>|<SERO>)

[<path>]

Capability Advertisement

 A new bit in Stateful PCE Capability TLV (I bit)

P2MP LSP Instantiation

- P2MP (N bit)
- Create (C bit)
- When used together indicate PCE-Initiated P2MP LSP

Add/Prune leaves

- PCUpd message with leaf type
 1 for adding of new leaves
- leaf type = 2 for pruning of old leaves

```
<PCInitiate Message> ::= <Common Header>
                         <PCE-initiated-lsp-list>
Where:
<PCE-initiated-lsp-list> ::= <PCE-initiated-lsp-request>
                              [<PCE-initiated-lsp-list>]
<PCE-initiated-lsp-reguest> ::=
(<PCE-initiated-lsp-instantiation>|<PCE-initiated-lsp-deletion>)
<PCE-initiated-lsp-instantiation> ::= <SRP>
                                       <end-point-path-pair-list>
                                       (<attribute-list>)
<PCE-initiated-lsp-deletion> ::= <SRP>
                                  <LSP>
Where:
<end-point-path-pair-list>::=
                   [<END-POINTS>1
                   <path>
```

[<end-point-path-pair-list>]

No change in operations (from P2P)

LSP instantiation

LSP deletion

LSP delegation and cleanup

Message Fragmentation

P2MP PCRpt, PCUpd and PCIntiate may not fit into a single PCEP message.

The new F-bit is used in the LSP object to signal that it was too large to fit into a single message and will be fragmented into multiple messages.

Each message except the last one, will have the F-bit set in the LSP object to signify it has been fragmented into multiple messages.

Should use the same PLSP-ID and SRP-ID-number for all fragmented message.

Questions & Comments?

Thanks!