Secure IGMP/MLD
Group Security Association Management

draft-atwood-pim-sigmp

draft-atwood-pim-gsam

draft-atwood-mboned-mrac-req
draft-atwood-mboned-mrac-arch

J. William Atwood
Bing Li

Concordia University, Montreal
Overview

- Exploring the area of Receiver Access Control for IP Multicast
 - Subtitle: Making money using IP Multicast
 - MBONED: “application” level drafts
 - PIM: “network” level drafts
- Secure IGMP was presented at IETF 88
- This presentation is about key management for Secure IGMP
 - A new coordination protocol: GSAM
Environment: Network Segment for Multicast

Q

NQ

EU1

EU2

EU3
Environment: Add EAPS and PAA

- EAPS
- AAAS
- PAA
- Q
- NQ
- EU1
- EU2
- EU3
Environment: Locate EAP participants

EAP Server EAP Authenticator EAP Peer

EAPS AAAS PAA

Q NQ

EU1 EU2 EU3
Environment: Show EAP Transport
Enforcement Points

- The PAA is the negotiator for one end of the PANA session
- In general, it will have one or more Enforcement Points (EP) under its control
 - For general network access control, the EP may well be a switch
 - For our application, the EP must be the Querier (Q) for that network segment.
Environment: Show EPs

Diagram:
- EAP Server
- EAP Authenticator
- AAAS
- EAPS
- NAS
- PAA
- Diameter
- PANA
- PaC
- EU1
- EU2
- EU3
- EP1
- Q
- NQ
- EP2
Master Session Key

- From EAP negotiation, a Master Session Key (MSK) becomes known to the EAPS and the EU.
- The EAPS forwards a copy to the PAA using Diameter.
EAP: MSK

MSK
- EAP Server
- EAP Authenticator
- Diameter
- PAA
- NAS
- AAAS
- PAA
- NAS

EAPS
- AAAS

MSK
- EAP Peer
- PANA
- PaC
- EU1
- EU2
- EU3

PANA
- EP1
- Q
- EP2
- NQ
EAP: MSK copied to PAA

MSK → MSK
EAP Server → EAP Authenticator
AAAS → PAA

MSK → EAP Peer
Diameter

PANA

EP1
Q

EP2
NQ

EU1

EU2

EU3
PaC-EP Master Key

- The PAA uses the MSK and EP-specific information to compute a PaC-EP Master Key (PEMK) for each EP.
- It sends the corresponding key to each of the EPs, along with information identifying the multicast group and the EU address.
PAA sends PEMK to EPs
Multicast Session Specific Key

- Each EP combines its PEMK with information about the EU address and the specific multicast session, to produce a Multicast Session Specific Key (MSSK).
- At the EU, given that the EP is known to be Q, and given the MSK and the specific multicast group, the EU can calculate the same MSSK.
- The EP and the EU now have a shared key that they can use to establish the EU’s right to join the multicast group.
EPs compute MSSK; EUs compute PEMK and MSSK
Open vs Secure Groups

- **Open Group**
 - No access controls
 - Operations will follow standard IP multicast rules (3376 or 3810)

- **Secure Group**
 - Access controls to prevent an unauthorized EU from accessing the group
 - Additional operations are needed
 - IGMP/MLD exchanges are protected with IPsec, using the derived keys
Many distinct Multicast Security Associations are required on each network segment:

- One with Q as the sender, and NQ plus the admitted members as receivers
- One for each legitimate participant EU, with the EU as the sender, and NQ plus Q as the receivers
- All are uni-directional, as defined in RFC5374
Unsecure Query

- Q: EU1
- NQ: EU2

GQ V2, V3

- Source: 224.0.0.1
- No group

- Q: EU1
- NQ: EU2

GSQ V2, V3
GSSQ V3

- G_IP
- Single group
Secure Query

<table>
<thead>
<tr>
<th>Q</th>
<th>EU1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQ</td>
<td>EU2</td>
</tr>
<tr>
<td></td>
<td>EU3</td>
</tr>
</tbody>
</table>

GSQ V2, V3
GSSQ V3
Secure
G_IP
Single group
IGMP v2/v3 Query

- The GQ is an “open” solicitation, for all groups, and so cannot be secured with information that is specific to one group. So, it has no “secure” form.

- The GSQ (v2 and v3) and GSSQ (v3 only) are specific to a group, and so can be secured with parameters that are specific to that group. No change is necessary to the packet format; we only need to protect the packet with IPsec.
Unsecure Report

<table>
<thead>
<tr>
<th>Q</th>
<th>EU1</th>
<th>R V2</th>
<th>Unsecure Suppression</th>
<th>G_IP</th>
<th>Single group</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQ</td>
<td>EU2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EU3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>EU1</th>
<th>R V3</th>
<th>Unsecure NO suppression</th>
<th>224.0.0.22</th>
<th>Multiple groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQ</td>
<td>EU2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EU3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The details of the v2 report and the v3 report are quite different, because different design decisions were made on how to minimize traffic:

- In v2, a Report contains only information about one group, but identical reports from other hosts should be suppressed.
- In v3, multiple groups may be contained in a single Report, which is sent to a common address (224.0.0.22)
Secure IGMP v2/v3 Report

- Since the cryptographic protection must of necessity be specific to a group,
 - We cannot use address 224.0.0.22
 - We cannot have multiple groups in a Report message

- We are interested in minimum change to IGMP
 - Our solution requires no change to the packet format

- We are interested in maximum compatibility
 - Our solution does not change the semantics of IGMP for “open” groups
Secure Report

R V2
Secure
NO suppression
G_IP
Single group

R V3
Secure
NO suppression
G_IP
Single group
Three problems

- We need to solve three problems:
 - Determining the keys for these GSAs
 - Determining the Security Parameter Index to use
 - Distributing the keys and the SPIs to the participants who need them

- Group Security Association Management (GSAM) protocol

- It is triggered when an “Unsolicited Report” is sent for the first time from an EU towards Q
Assumptions

- The routers in a shared-medium LAN can authenticate and authorize each other.
 - Same administrator

- The participants can distinguish a secure group from an open group
 - Details are for future study

- There is a shared key between the EP and the EU
 - Already shown
NQ registers with Q

- NQ has to establish a secure path to Q
 - QSAM_INIT (c.f. IKE_SA_INIT)
 - QSAM_AUTH (c.f. IKE_AUTH)
 - Based on the administratively-assigned authorization mechanism
EU registers with Q

- Before actually sending the first unsolicited report, the EU must negotiate the GSAs using GSAM.
- EU has to establish a secure path to Q
 - QSAM_INIT
 - QSAM_AUTH
 - Based on the MSSK shared with its EP (i.e., with Q)
Q creates a pair of GSAs

- GSA_q is for outgoing queries from Q
- GSA_r is for incoming reports from EU
- Q decides on the SPI to be used for each of these GSAs.
- Q distributes the two GSAs and the two SPIs to the EU, and to the NQ.
- If the incoming SPI on the EU would cause a conflict, the EU can reject the assignment and force a joint determination of the appropriate SPI.
Another EU joins

- EU2 goes through the same steps
 - GSAM_INIT
 - GSAM_AUTH

- Q must re-do the establishment of GSA_q and GSA_r, and re-distribute the result to NQ, EU1, and EU2

- EU1 and EU2 must start using the new GSAs
Differences between GSAM and GDOI

- GDOI delivers only keys for a single Group Security Association
- GDOI assigns SPIs arbitrarily
- GSAM delivers computed keys and negotiated SPIs, for two related GSAs
- The GCKS in GDOI is administratively determined; in GSAM it is the Q
- The special needs of an NQ (if present) are accounted for
- GSAM is link-local, so it scales well
Documents: Issued

- MRAC Requirements
 - draft-atwood-mboned-mrac-req
- MRAC Architecture
 - draft-atwood-mboned-mrac-arch
- Secure IGMP
 - draft-atwood-pim-sigmp
- GSAM (coordination of Secure IGMP end points)
 - draft-atwood-pim-gsam
Documents: To Come

- Using PANA+EAP to achieve the MRAC
- Secure MLD
Salekul Islam contributed significantly to mrac-req and mrac-arch
Next Steps

- Request for feedback (on the list or elsewhere)

- Eventual adoption of all three -pim documents as WG documents
Thank You!

Questions?