Unified IPv6 Transition Framework With Flow-based Forwarding

draft-cui-softwire-unified-v6-framework-00 Presenter: Cong Liu

Motivation

- There has been many softwire transition mechanisms
 - Generally look the same, with differences on: addressing, provisioning, address sharing policy, etc.
- This work is trying to discover a "unified" approach for softwire mechanism
 - Use existing methods, currently based on openflow
 - Unify softwire provisioning
 - Unify forwarding devices

Introduction

- Mainly focus on IPv4 over IPv6 tunneling scenario
- Replace routers (CPE & BR) with OpenFlow switches
 - Keep other devices in ISP network unchanged
- Centralized controller to manage provisioning & forwarding rule

Device configuration

- Before connect to the controller, each switch is configured with:
 - An IPv6 address/prefix
 - Controller's IPv6 address, port, etc.
- CPE Switches require automatic configuration
 - Be compatible with RFC7084: Support DHCPv6 PD
 - Controller Information: DHCPv6 or NETCONF (?)

Forwarding Configuration

- Use Openflow-style forwarding rule for switches
 - Rule format: Match Action
- Softwire information are represented by forwarding rules, do not need DHCPv6-based provisioning
 - BR Address: Destination address of CPE's tunnel encapsulation action
 - IPv4 address and PSID: Matching conditions of BR's downstreaming rules, values of set-field actions (to implement NAT44)

Requirements for Switches

- On top of OpenFlow switch
- Action:
 - Both CPE&BR: Support IPv6 tunneling encapsulation / decapsulation actions
- Match:
 - BR Switch: Support match field masking for ports (BR Switch can then treat all traffic to the same IPv4 address + port set as a single flow)

Example: 4over6

- Controller preserves IPv4 addr+PSID for each CPE
 - MAP style: calculate from CPE's IPv6 prefix
 - Lw4o6 style: dynamic allocated
- BR Switch forwarding rules:
 - IPv6 tunneling encapsulation / decapsulation rule for each CPE
- CPE Switch forwarding rules:
 - IPv6 tunneling encapsulation / decapsulation rule for all flows
 - Mesh mode: variable tunnel destination address for each destination
 - NAT rule for each flow (re-write IPv4 address and port)

NAT Fallback

- Allow switches to handle NAT locally
 - Implemented by a virtual interface or iptables
 - Needs automatically configuration for external address and ports
- Keep the ability of controller based NAT
 - Switch could handle "important" flows to improve service quality
- Tradeoff: Flexibility V.S. Efficiency

Next Step

- Comments?
- Move forward in Softwire Workgroup?

Backup: 4over6 BR Forwarding Configuration

- For every binding entry: Controller installs forwarding rules in BR Switch (per-subscriber)
 - Decapsulation Rule: upstream to Internet

src ip6=2002::1

10

Backup: 4over6 CPE Forwarding Configuration

- CPE Switch sends every initial packet of the same (source_ip, source_port) flow to controller
- Controller allocates available public IPv4 address+port, and installs forwarding rules in CPE Switch (per-flow)

