
A-PAWS: Alternative Approach for PAWS
draft-nishida-tcpm-apaws-01

Yoshifumi Nishida

 Background

 RFC1323 (RFC7323) requires putting timestamps in all
segments

 Once TSopt has been successfully negotiated,

 TSopt MUST be sent in every non-<RST> segment for the

 duration of the connection

 Timestamp consumes 10-12 bytes in option space
 25-30% available option space cannot be used for other options!

 Why We Need TS in Every Segment?

 RTT measurements
 TS in every segment is not necessary
 Number of samples per RTT does not affect the effectiveness of RTO

 PAWS
 TS in every segment is necessary
 Otherwise, TCP might accept old duplicated segments by mistake

 If we have PAWS-like mechanism without TS, we don’t need
TS in every segments!

 A-PAWS: An Alternative for PAWS

 Design Principle
 Do not rely on timestamp

 Provide the same protection as PAWS does

 Fallback to PAWS if there is a risk
 Never be worse than PAWS

 A-PAWS’s Logic

 Basic rules
 Senders don’t put TS until 4GB (2**32 bytes) has been sent

 Receivers mustn’t drop segments without TS until receive 4GB

 After 4GB transmission, endpoints fallback to PAWS

 Applicability
 99.9% TCP connections don’t send more than 4GB

 Overhead
 Requires both endpoints to count sending/receiving bytes, but

shouldn’t be a problem

 Discussions (1)

 PAWS is not only for sequence wrapping, but also used for
protection against packets from previous connections

 This situation may happen due to rebooting or using
SO_REUSEADDR

 Solution
 Don’t use A-PAWS for a MSL upon starting up

 Don’t use A-PAWS if SO_REUSEADDR is set

 Discussions (2)

 PAWS can be used to enhance protection against spoofed
packets

 Receiver can check TS in addition to 5 tuples

 PAWS logic for protection against spoofed packets
 Compare TS in the received segment (SEG.TSVal) and latest

received TS (TS.Recent)

 SEG.TSval < TS.Recent ... reject

 SEG.TSval >= TS.Recent ... accept

 This is probably not useful for attacks in 21st century
 Using random TS can pass PAWS check easily

 Attackers usually can send multiple packets

 Discussions (3)

 A-PAWS requires a signalling mechanism between sender and
receiver, how do we do it?

 3 possible approach
 Using new TCP option in SYN segments
 Easy and straightforward, but it consumes option spaces in SYN

 Using Timestamp values in SYN segments
 Proposed in draft-scheffenegger-tcpm-timestamp-negotiation
 Not standardized yet

 Using new TCP option in Non-SYN segments
 Sounds better approach, but is it possible?

 Signaling With non-SYN Segments

 Design Principal
 Don’t invent another 3WHS in non-SYN segments
 Too much complexity!

 Simple and easy mechanism to be implemented
 Exchange only 2 segments for feature negotiation
 Can utilize any DATA and ACK segments exchange

 Loose Synchronization in A-PAWS

 A-PAWS doesn’t require tight synchronization between
senders and receivers

 A-PAWS receiver can work with PAWS sender

Case # Sender Receiver

PAWS

A-PAWSPAWS

A-PAWS

PAWS

A-PAWS

PAWS

1

2

3

4 A-PAWS

 We only need to avoid case 3

 Signaling Using non-SYN Segments

 Exchange only 2 segments for feature negotiation
 Basic Rules
 A-PAWS node MUST always activate A-PAWS receiver logic
 A-PAWS node uses A-PAWS receive logic whether sender uses PAWS

or A-PAWS

 A-PAWS node MUST NOT activate A-PAWS sender logic until it
receives A-PAWS signaling

 A-PAWS node uses sender logic only when peer supports A-PAWS

 A-PAWS Signaling Example (1)

 A-PAWS sender v.s. A-PAWS receiver

A-PAWS
Sender

A-PAWS
Receiver

Data + A-PAWS option

ACK + A-PAWS option

Activate A-PAWS
sender logic
from here

Activate A-PAWS
sender logic
from here

 If both endpoints receive A-PAWS options, both activate
A-PAWS sender logic (Case 4)

 A-PAWS Signaling Example (2)

 A-PAWS sender v.s. PAWS receiver

A-PAWS
Sender

PAWS
Receiver

Data + A-PAWS option

ACK

Don’t Active
A-PAWS sender logic

Ignore option
as it’s not supported

 If receiver doesn’t support A-PAWS, both ends don’t activate
A-PAWS sender logic (Case 1)

 A-PAWS Signaling Example (3)

 A-PAWS sender v.s. A-PAWS receiver with signaling error

A-PAWS
Sender

A-PAWS
Receiver

Data + A-PAWS option

ACK

Don’t Activate
A-PAWS sender logic

Activate A-PAWS
sender logic
from here

 If ACK + A-PAWS segment is dropped or A-PAWS option is
removed, sender won’t activate A-PAWS sender logic

 Sender uses PAWS and receiver use A-PAWS (Case 2,4)

 Conclusion

 What A-PAWS does
 Provide PAWS-like protection without timestamp
 Easy to implement because of simple logic

 Provide the same level of security as PAWS
 No worse than PAWS
 Fallback to PAWS when it’s necessary

 Feature negotiation mechanism with non-SYN segments
 might need more discussion, but it should be worth trying

 We might be able to use similar techniques in other extensions

 What A-PAWS does not
 Provide better protection than PAWS

 Make PAWS obsolete
 A-PAWS requires PAWS

 Questions?

 Please check draft-nishida-tcpm-apaws
 for more info!

 Feedbacks are welcome!

