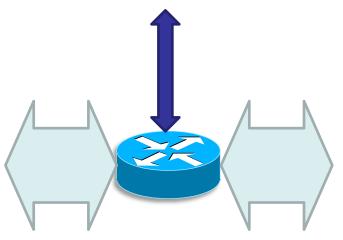

Overview of autonomic networking ideas and the need, scope and criteria for use cases

UCAN BoF 90th IETF, 23 July 2014 Michael Behringer, Brian Carpenter, Sheng Jiang

Traditional


- Configuration
- Monitoring, Reporting
- Troubleshooting

Routing

Autonomic

- Policy and Service Orchestration
- Aggregated Reporting
- Simplified troubleshooting

- Routing
- Discovery
- Autonomic interactions (self-*)

Autonomic Networking means: →Minimize operator interventions →Minimize NMS dependencies

Overall Goal

- Distribute what you can, centralise what you must
- Create a common infrastructure for autonomic functions

Example:

Control and Management Plane Security

- Today, control plane and management plane is secured by:
 - IGP routing authentication (OSPF, ISIS, etc)
 - BFD authentication, BGP routing authentication, SSH, etc...
- Each function defines it's own
 - Key material
 - Algorithms
- Idea: Have a single way to secure all these functions
 - Based on one common trust anchor
 - Protocols still use their own methods, but based on shared trust model
 - → Protocols become "secure by default"

draft-irtf-nmrg-autonomic-network-definitions

1. Introduction to Autonomic Networking	•	•	•	•	•	2
2. Definitions	•	•	•	•	•	3
3. Design Goals	•	•	•	•	•	4
3.1. Self-Management	•	•	•	•	•	4
3.2. By Default Secure	•	•	•	•	•	5
3.3. Decentralisation and Distribution	•	•	•	•	•	5
3.4. Simplification of the Northbound Interfaces	•	•	•	•	•	5
3.5. Abstraction	•	•	•	•	•	6
3.6. Autonomic Reporting	•	•	•	•	•	6
3.7. Modularity	•	•	•	•	•	6
3.8. Common Autonomic Networking Infrastructure	•	•	•	•	•	7
3.9. Independence of Function and Layer	•	•	•	•	•	7
3.10. Full Life Cycle Support	•	•	•	•	•	8
4. Non Design Goals	•	•	•	•	•	8
4.1. Eliminate human operators	•	•	•	•	•	8
4.2. Eliminate emergency fixes	•	•	•	•	•	8
4.3. Eliminate management control and central policy	•	•	•	•	•	9
4.4. Eliminate existing configuration tools	•	•	•	•	•	9
4.5. Eliminate existing network management systems .	•	•	•	•	•	9
5. An Autonomic Reference Model	•	•	•	•	•	9
_						

[...]

Gap Analysis for Autonomic Networking

draft-irtf-nmrg-an-gap-analysis-00

Introduction

- Goals and definitions are from draft-irtf-nmrg-autonomic-network-definitions.
- This draft aims to identify status of autonomic behaviors and outline what is missing.
- Reviews status for address management, DNS, routing, security & AAA.
- Then reviews non-autonomic behaviors and gaps.

Non-autonomic behaviors (1)

- Network establishment, including:
 - analyze the requirements of the new network
 - design network architecture and topology
 - decide device locations and capacities
 - security bootstrap*
 - transplant initial network management policies/behaviors from other networks and localizing them*
- Network Maintenance & Management:
 - Configuration updates after installing (or removing) devices*
 - Adjust the network into the best possible situation.*
 - *candidates for autonomic operation

8

Non-autonomic behaviors (2)

- Troubleshooting and Recovery:
 - Overload of central or human management during major failures.*
 - Associating warnings from multiple devices*
 - Correcting software failures and configuration errors*
 - Predicting failures or overloads before they occur*
 - *candidates for autonomic operation

g

Approach to autonomy: what's missing? (1)

- More Coordination among Devices or Network Partitions
 - Exchange knowledge between components
 - Horizontal as well as vertical information exchange
 - Detect and correct inconsistencies where they arise
- Don't rely on a superior intelligence except for general policy intent.
 - Do not wait for instructions before correcting or improving configuration.

Approach to autonomy: what's missing? (2)

- Forecasting and Dry Runs
 - In a conventional network, configuration changes have to be designed theoretically.
 - There is a real risk that applying the changes to the running network will cause a failure.
 - An autonomic network could fill this gap with a "dry run" mode.
- Benefit from knowledge
 - Historic knowledge, knowledge transplanted from other networks, and relationship between network events and configuration may help network to configure and stabilise itself.

Scope and Criteria for Use Cases

Criteria for Use Cases

A function is a good candidate for autonomic work at the IETF if:

- There is operator interest
- Distribution
 - The function cannot be completely centralised, or
 - There are advantages with distribution
- Sharing infrastructure
 - There are other functions that require similar functionality or benefit from the proposed function
- Abstraction
 - There is an easy way to describe the function, high-level, network wide
- Simplicity to implement
 - Makes it easier to get started