

IPv6 mapping for non-IP protocols

draft-rizzo-6lo-6legacy-02

IETF 6lo WG meeting @ IETF 91

Nov 11th, 2014

Gianluca Rizzo, PhD Institute of Information Systems gianluca.rizzo@hevs.ch Techno-Pôle 3 – CH-3960 Sierre

Re-introducing the Draft: Motivation

- IPv6 is a powerful enabler for IoT
- Large number of legacy technologies non-IP enabled
 - Typically connect to the Internet via «gateways»
- Why on the Internet?
 - Interoperate with traditional computing infrastructure
 - To ease management, to enable new services (Smart homes, smart building, etc.)

Example: Home Appliances Direct Control

A number of households, with appliances connected via various protocols (ex, ZigBee, KNX, Wifi), served by a same utility company

- IPv6 technologies: Direct control. No need for gateways.
- Non-IP technologies: gateways interpret commands and take actions

Control commands should be in a «common language» as if there were no gateways in the middle

- Address each device as if IPv6 enabled
- Scalability

Enabling IPv6 stateless autoconfiguration for legacy devices

Make legacy devices appear as directly addressable, by assigning their own IPv6 address

Gateway cares about «translation» at L3 and above

We propose a mapping scheme between legacy protocols and IPv6 which minimizes protocol aliasing and conflicts

- No standard mapping defined for links without IEEE EUI-64 Identifiers
- RFC 4291 (App. A) leaves several issues open
- Coverage: legacy protocols with node identifiers

 $\pi \approx \&$ HES-SO Valais-Wallis Page 4

Changes wrt v 00 (01)

- Informational no standard
- Added a motivation section with some examples
- Adapted the mapping to account for a larger number of legacy protocols (how many?)
- Added a section on security issues

-	+	+	+4	+4			+	ł
	Tech.	U/L	Tech.	Reserved	Tech.	EUI-64	Tech.	
	ID	"0"	ID		Mapping	"0x0000"	Mapping	ĺ
	MSB		LSB		MSB		LSBs	ĺ
	(6 bits)	(1 bit)	(5 bit)	(4 bits)	(8 bits)	(16 bits)	(24 bits)	ĺ
Н	+	+		+			+	+

- A Technology ID Code for identification of the legacy protocol (11 bits, was 6)
- U/L bit: to 0 to avoid conflicts with EUI-64 mapped addresses
- A Reserved field (4 bits, was 8): for the identification of different interfaces for a same technology, avoiding intra protocol aliasing
- Technology mapping: hash of the interface identifier
- **EUI-64 field:** to "0x0000" to avoid conflicts with EUI-64 interface identifiers

