
IETF91 11/13/2014 ALTO Incremental Updates 1

ALTO Incremental Updates
draft-alto-incr-update-sse-00

W. Roome
Alcatel-Lucent/Bell Labs (NJ)

R. Yang
X. Shi

Yale

IETF 91
November 13, 2014

IETF91 11/13/2014 ALTO Incremental Updates 2

Motivation
•  Maps can be very large
•  Small subsets can change frequently
•  Clients want timely & efficient updates:

–  Get updates as soon as possible (e.g., no polling delay)
–  Only get the changes

IETF91 11/13/2014 ALTO Incremental Updates 3

Overview of Approach
•  Design a general framework for continuous & incremental

updates to any ALTO resource
–  ALTO Server defines an Update Service for one or more resources
–  Client establishes an HTTP stream to an Update Service
–  Server sends updates as they become available
–  Updates are Server-Sent Events (SSEs)
–  Each SSE updates one resource
–  Updates can be complete replacement, or just changes

•  This replaces previous “client-pull/polling” proposal,
draft-roome-alto-incr-update-00

IETF91 11/13/2014 ALTO Incremental Updates 4

Server-Sent Events (SSE)
•  Just like HTTP, except content is stream of events

–  W3C Standard
–  New content type, not a new protocol (IMHO)
–  Events are separated by blank lines
–  Each event has a type and data:

	HTTP server->client headers	
	event: first-type	
	data: content of first event	
	event: another-type	
	data: here is a second event with	
	data: longer content than the first	

•  Simple & robust:
–  Firewalls & NAT boxes: No problem!
–  HTTP proxy: Must pass data as server sends it, and must keep

stream open for a long time

	

IETF91 11/13/2014 ALTO Incremental Updates 5

Our Update Events
•  Each SSE updates one ALTO resource
•  Data is JSON message with the update
•  Type has the media-type of the JSON message, and the

ID of an ALTO resource
–  Complete replacements use ALTO media-types
–  Incremental updates use JSON Merge-Patch encoding (next slide)

 HTTP server->client headers	
 event: application/alto-costmap+json,my-routingcost-map	
 data: { full cost-map message }	
 event: application/merge-patch+json,my-routingcost-map	
 data: { JSON Merge-Patch with changed costs }
 event: application/merge-patch+json,my-routingcost-map	
 data: { JSON Merge-Patch with changed costs }

IETF91 11/13/2014 ALTO Incremental Updates 6

JSON Merge-Patch
•  Standard (RFC 7386) for JSON incremental updates

–  Very efficient for data expressed as nested JSON objects

•  Update algorithm:
–  Do depth-first walk of objects in merge-patch message, keeping path to

current value. When encountering a value that is not a JSON object
dictionary (e.g., string, number, array, etc), replace the previous value for
that path with the new value. If there was no value for that path, create
one. If the new value is null, delete the previous value for that path.

•  Example:
–  Change (or add) the costs from PID1=>PID2 to 9, PID3=>PID3 to

1, and delete the cost from PID3=>PID1:
 { "cost-map”: "PID1": { "PID2": 9 },	
 "PID3": { "PID1": null, "PID3": 1 } }	

–  Perfect for Cost Map changes
–  Okay, but not optimal, for Network Map changes

	

IETF91 11/13/2014 ALTO Incremental Updates 7

ALTO Update Stream Service
•  GET-mode
•  Media-type is text/event-stream (registered for SSE)
•  URI gives a stream of SSE update events for a set of

resources
•  “event” capability gives the IDs of the resources for which

this stream provides updates, and the types of update
messages for each resource
–  Server selects the resources and update types
–  Server MUST offer complete replacement updates
–  Server MAY offer merge-patch updates

IETF91 11/13/2014 ALTO Incremental Updates 8

IRD Example
•  This resource provides both complete-replacement and

merge-patch updates for a cost map, but only complete-
replacement updates for the network map:

 "my-routingcost-update-stream": {	
 "uri": "http://alto.example.com/updates/routingcost",	
 "media-type": "text/event-stream",	
 "uses": ["my-network-map", "my-routingcost-map"],	
 "capabilities": {	
 "events": [
 "application/alto-networkmap+json,my-network-map",	
 "application/alto-costmap+json,my-routingcost-map",	
 "application/merge-patch+json,my-routingcost-map"	
]	
 }	
 },	

IETF91 11/13/2014 ALTO Incremental Updates 9

Update Stream Semantics
•  A server MAY offer multiple Update Stream resources

–  Server chooses the resources for each stream

•  The updates to a dependent resource and its “parent”
resource SHOULD be available via the same stream
–  Thus a client can get updates for a Cost Map and its Network Map

and throught the same stream

•  If a stream offers updates to a “parent” resource and a
dependent resource, the server MUST send update events
for the parent resource before sending updates for the
dependent resource
–  E.g., the server MUST send Network Map update events before

Cost Map updates

IETF91 11/13/2014 ALTO Incremental Updates 10

Update Stream Semantics (Part 2)
•  If several streams offer updates to the same resource, the

updates MUST give the same data
–  But the server MAY group changes into different merge-patch

update events in different streams
–  E.g., suppose three cost points change within a short interval. On

one stream, server may send three SSEs, with one cost each. On
another stream, the server may send one SSE with all three costs.

•  When a client establishes a stream, the server MUST
immediately send complete replacement update events for
every resource
–  But there are exceptions, as described later

IETF91 11/13/2014 ALTO Incremental Updates 11

Update Stream Example
GET /updates/routingcost HTTP/1.1	
Host: alto.example.com	
Accept: text/event-stream	
HTTP/1.1 200 OK	
Content-Type: text/event-stream	

event: application/alto-networkmap+json,my-network-map	
data: { ... full Network Map message ... } 	
event: application/alto-costmap+json,my-routingcost-map	
data: { ... full Cost Map message ... }	
event: application/merge-patch+json,my-routingcost-map	
data: {"cost-map": {"PID1" : {"PID2" : 9}}}	

event: application/alto-networkmap+json,my-network-map	
data: { ... full Network Map message ... }	
event: application/merge-patch+json,my-routingcost-map	
data: {"meta": {"dependent-vtags": {"tag": "new-network-map-tag"}}}	

IETF91 11/13/2014 ALTO Incremental Updates 12

Filtered Update Stream Service
•  Like full Update Stream Service, except POST-mode

–  Client selects subset of available events
–  Client provides input for any POST-mode resources
–  Client may provide vtags of versioned resources, such as Network

Maps, which it has previously retrieved; the server should send
merge/patch updates relative to that version, and omit the
complete map

•  Examples:
–  Server offers a Filtered Update Stream for a Network Map and

routingcost & hopcount Cost Maps. Then client may skip hopcount
cost updates and initial full Network Map.

–  Server offers a Filtered Update Stream for an Endpoint Property
Service for frequently changing properties (server load, bandwidth,
etc.). Client requests updates for those properties for a set of
endpoints. Server sends new values when the properties change.

IETF91 11/13/2014 ALTO Incremental Updates 13

Controversial Design Decision!
•  At startup, the server MUST send full maps for all untagged

resources
–  Cost Maps are not tagged, so server always sends full Cost Maps

•  If a stream drops, when the client reconnects, the server
must resend data the client already has
–  Ugly! Inefficient!!
–  Could add vtags to Cost Maps, but that complicates ALTO

•  But this is only a problem for large maps and frequent
disconnects
–  Clients who need large maps rarely drop connections
–  Clients who do drop connections don’t need large maps

•  So we propose to keep it simple, and accept the occasional
inefficiency

IETF91 11/13/2014 ALTO Incremental Updates 14

Next Steps
•  Tentatively approve the key points of this approach:

–  Transport: Server-Sent Events (SSE)
–  Message format: JSON Merge-Patch & Full ALTO messages
–  Server sends updates when they are available
–  One stream may provide updates for many resources
–  Server may offer multiple Update Stream resources
–  Server may provide an update stream for any resource
–  Server is not required to provide an update stream for every

resource
–  At startup, server sends full replacement events for all untagged

resources

•  Between now & next meeting:
–  Review proposal via mailing list

Thank you

(Backup Slides)

IETF91 11/13/2014 ALTO Incremental Updates 15

IETF91 11/13/2014 ALTO Incremental Updates 16

IRD For Filtered Update Stream
 "my-allresources-update-stream": {	
 "uri": "http://alto.example.com/updates/allresources",	
 "media-type": "text/event-stream",	
 "uses": [
 "my-network-map",	
 "my-routingcost-map","my-hopcount-map",	
 "my-properties"	
],	
 "accepts": "application/alto-updatestreamfilter+json",	
 "capabilities": {	
 "events": [
 "application/alto-networkmap+json,my-network-map",	
 "application/alto-costmap+json,my-routingcost-map",	
 "application/merge-patch+json,my-routingcost-map"	
 "application/alto-costmap+json,my-hopcount-map",	
 "application/merge-patch+json,my-hopcount-map"	
 "application/alto-endpointprops+json,my-properties",	
 "application/merge-patch+json,my-properties"	
]	
 }	
 }	

IETF91 11/13/2014 ALTO Incremental Updates 17

Filtered Update Stream Example 1
POST /updates/allresources HTTP/1.1	
Host: alto.example.com	
Accept: text/event-stream	
Content-Type: application/alto-updatestreamfilter+json	
Content-Length: ###	
{ "events": [
 "application/alto-networkmap+json,my-network-map",	
 "application/alto-costmap+json,my-routingcost-map",	
 "application/merge-patch+json,my-routingcost-map"	
],	
 "vtags": [
 "resource-id": "my-network-map", "tag": "314159265359”}	
] } 	
 	
HTTP/1.1 200 OK	
Connection: keep-alive	
Content-Type: text/event-stream 	
event: application/alto-costmap+json,my-routingcost-map	
data: { ... full Cost Map message ... }	

IETF91 11/13/2014 ALTO Incremental Updates 18

Filtered Update Ex 2: Request
 POST /updates/allresources HTTP/1.1	
 Host: alto.example.com	
 Accept: text/event-stream	
 Content-Type: application/alto-updatestreamfilter+json	
 Content-Length: ###	
 { "events": [
 "application/alto-endpointprops+json,my-properties",	
 "application/merge-patch+json,my-properties"	
],	
 "inputs": {	
 "my-properties": {	
 "properties" : ["priv:ietf-bandwidth"],	
 "endpoints" : [
 "ipv4:1.0.0.1",	
 "ipv4:1.0.0.2",	
 "ipv4:1.0.0.3"	
]	
 }	
 }	
 }	

IETF91 11/13/2014 ALTO Incremental Updates 19

Filtered Update Ex 2: Response
 HTTP/1.1 200 OK	
 Connection: keep-alive	
 Content-Type: text/event-stream	
 	
 event: application/alto-endpointprops+json,my-properties	
 data: { "endpoint-properties": {	
 data: "ipv4:1.0.0.1" : { "priv:ietf-bandwidth": "13" },	
 data: "ipv4:1.0.0.2" : { "priv:ietf-bandwidth": "42" },	
 data: "ipv4:1.0.0.3" : { "priv:ietf-bandwidth": "27" }	
 data: } }	
 	
 event: text/merge-patch+json,my-properties	
 data: { "endpoint-properties":	
 data: {"ipv4:1.0.0.1" : {"priv:ietf-bandwidth": "3"}}	
 data: }	
 	
 event: text/merge-patch+json,my-properties	
 data: { "endpoint-properties":	
 data: {"ipv4:1.0.0.3" : {"priv:ietf-bandwidth": "38"}}	
 data: }	
	

IETF91 11/13/2014 ALTO Incremental Updates 20

Update Stream and Resource
Dependency
•  Stream composition requirement

–  If a resource y depends on another resource x, then an update
stream that includes y should also include x

•  Event ordering requirement
–  If an update event x should appear before dependent events (e.g., ev_n10

that updates network map from v0 to v1 should appear before ev_c21)

costMapv3

costMapv2

costMapv1

costMapv0
netMapv0

netMapv1
ev_c10

ev_c21

ev_c32

ev_n10

