An Autonomic Control Plane

draft-behringer-anima-autonomic-control-plane-00.txt

91th IETF, 10 Nov 2014
Michael Behringer
Steinthor Bjarnason
Balaji BL
Toerless Eckert
Reference Model of an Autonomic Node

From draft-irtf-nmrg-autonomic-network-definitions:

Autonomic Node

- Intent
- Feedback loops

Autonomic User Agent

Self-Knowledge

Autonomic Service Agents

Network-Knowledge (Discovery)

Autonomic Control Plane

Standard Operating System Functions

Autonomic Interactions
The Autonomic Control Plane

- **Definition:** The conjunction of protocols and interactions between autonomic service agents on nodes and registrars.
 - Includes: Discovery, negotiation, messaging, etc.

- **Four options (from draft-irtf-nmrg-autonomic-network-definitions):**
 - Inband: Like today’s control plane protocols
 - Out of band: On a separate DCN
 - In a configured overlay network (VPN)
 - In a self-managing overlay network (VPN) ➡️ Main focus today
Self-Creation of the Autonomic Control Plane

1) Preconditions

- Each node must have a domain certificate
 - Or other way to authenticate other nodes
Self-Creation of the Autonomic Control Plane

2) Adjacency Discovery

- Nodes discover each other
- Exchange their identities
- Use IPv6 link local
 → No dependency on configuration or routing!
Self-Creation of the Autonomic Control Plane

3) Authentication

• Nodes validates certificate of adjacent node
Self-Creation of the Autonomic Control Plane

4) Capability Negotiation

- Negotiation of:
 - Tunnel type supported; ex: GRE/IPsec
 - Other parameters
Self-Creation of the Autonomic Control Plane

5) Channel Establishment

- Establish secure channel
- Based on IPv6 link local
 → No dependency on configuration or routing!
Self-Creation of the Autonomic Control Plane
5) Context Separation

- Auto-create VRF
- Insert tunnel into VRF
Self-Creation of the Autonomic Control Plane

6) Addressing

- Auto-create IPv6 loopback address
- Suggestion: Use IPv6 ULA
 - Global ID: Hash of domain name
 - Subnet and interface ID: Device specific, unique in network
 - Derive from device name, or
 - Assign at time of first registration of device
Self-Creation of the Autonomic Control Plane

7) Routing

- Routing inside the ACP to distribute loopbacks
- Automatic
- Routing protocol must be scalable and light-weight
 - Should not cause undue load on devices
 - We suggest RPL
Properties of the Autonomic Control Plane (self-managing overlay)

- Self-Creating
- Self-Managing
- Self-Healing
- Self-Optimising
- Self-Protecting

The Autonomic Control Plane is autonomic itself!

Use Cases:
- Bootstrapping an un-configured network
- Virtual Out Of Band Channel
 - ACP not dependent on configuration, addressing, routing
Relationship with other IETF activities

• The self-managing ACP could be used in other contexts, but not mandatory.
 – Ex: Homenet
Next Steps

• Clarify the four ACP options
 – (inband, out of band, configured overlay, autonomic overlay)
• Include feedback from Rene Struik
• Include feedback from Brian Carpenter:
 – Partitioning and Merging
 – Merging previously unrelated networks

• Is this useful?