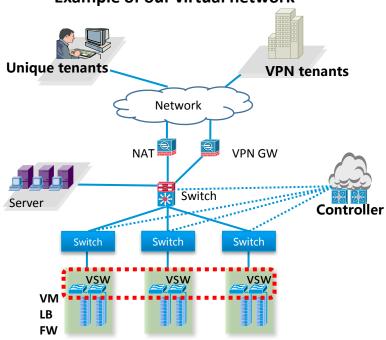
Benchmarking Methodology for Virtualization Network Performance

draft-huang-bmwg-virtual-network-performance-00

Lu Huang <u>Rong Gu (Presentor)</u> Dapeng Liu Bob Mandeville Brooks Hickman Guang Zhang

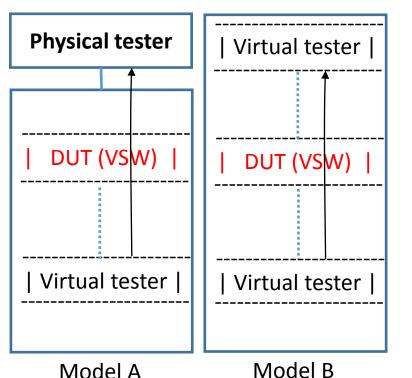

Testing scenario

The virtual network has been widely established in IDC.

Performance of virtual network has become a valuable consideration to the

IDC managers.

Considerations for Benchmarking Virtual Network Functions and Their Infrastructure
Benchmarking Methodology for SDN Controller Performance


Example of our virtual network

This draft focuses on <u>a benchmarking methodology for virtualization network</u>

performance based on virtual switch as the DUT.

Two testing models

Test model A and Test model B (topology and traffic directions)

 In Model A, a physical tester and a virtual tester is used in order to testing the DUT performance through physical NICs.

In Model B, virtual testers are used
 with the DUT deployed in one server,
 which tests the DUT performance
 without the limitation of NICs.

Different bottlenecks relay on each model. But how to find all of the bottlenecks with the comparison of model A and model B? Is there any other topology to be considered?

Testing parameters

Test preparation-the parameters

Hypervisor	VM VNIC	VM Memory	Frame	
Type	Speed	CPU Allocation	Size	Throughput
ESXi	1G/10G	512M/1Core	64 128 256 512 1024 1518	

Figure 1: Sample Calibration Permutation

➤The hypervisor type

► NIC speed and number

➤ CPU type of the server

➤The number of virtual machines

VNIC speed and number allocated for the virtual machines

CPU allocated for the virtual machines

MEM allocated for the virtual machines

Testing indicator—Throughput

>Key performance indicators listed for virtual network:

1. <u>Throughput under various frame sizes</u>: forwarding performance under

various frame sizes is a key performance indicator of interest.

 $(1)\,$ VM used to offer traffic to the DUT

- 2 Test the max throughput under one frame size by adjusting testers
- ③ change the frame size to get the max throughput

Frame size	01		Byte	Throughput	(Gbps)
(Byte)			0	0	
			128	0.46	
Test result format			256	0.84	
			512	1.56	
Give an example of the test result as the right table =>			1024	2.88	
			1518	4.00	

Testing indicator—CPU/MEM

>Key performance indicators listed for virtual network:

- 2. <u>DUT consumption of CPU</u>: Memory consumed by DUT
- 3. <u>DUT consumption of MEM</u>: Memory consumed by DUT
- $(1)\,$ VM used to offer the throughput traffic to DUT
- 2 Record the CPU/MEM load value of server in shutting down and bypass the DUT
- 3 Calculate the CPU/MEM/latency consumption

Frame size	Throughput	Server CPU	VM CPU
(Byte)	(bps)	(MHz)	(MHz)
Frame size	Throughput	Server MEM	VM MEM
(Byte)	(bps)	(MB)	(MB)

Test result format

My doubts on that how to evaluate the CPU/MEM accurately?

Testing indicator—Latency

>Key performance indicators listed for virtual network:

4. <u>Latency readings</u>: Some applications are highly sensitive on latency Under the max throughput.

Difficulties: Time Synchronization can be a big problem.

Seek for solutions...

5. Other important indicators to be added...?

Next Step...

- VxLAN testing
- Virtual load balance testing
- SDN controller testing

Solicit comments and suggestions...

MANY THANKS

Lu Huang Rong Gu Dapeng Liu **China Mobile Bob Mandeville** Iometrix **Brooks Hickman Spirent Communications Guang Zhang** IXIA