
Secure Home Networking Control Protocol

draft-barth-homenet-hncp-security-trust-01

Steven Barth (author) & Pierre Pfister (speaker) (see https://github.com/fingon/ietf-drafts for draft sources & individual diffs)

HNCP draft and security state

Current state

hncp-01: unsecured, manual IPsec or unspecified certificate-security

bonnetain-hncp-security-00: public-key web-of-trust security in HNCP \rightarrow reinventing algorithm mobility, replay protection, ...

draft-barth-homenet-hncp-security-trust-01 (for hncp-02) temporarily split security bits from hncp-02 for discussion and later merge HNCP-specific: excludes existing single-link threats (RA, DHCPv6, ...) assets: topology, addressing, naming / SD, IGP-capability payloads

Border Determination

General

manually defined or automatic (tricky!) on per-link scale

Automatic Border Discovery

presence of a "non-homenet" DHCP(v6) server \rightarrow link is external

done with non-participating routers \rightarrow HNCP auth/encryption doesn't help links might only have clients \rightarrow pure absence of auth'd routers != external usual lack of bi-di authentication from ISPs \rightarrow impossible to identify reliably

however, securing links between ISP and CPE is out-of-scope here

Automatic Border Discovery

Threats for Automatic Border Discovery

external attacker (e.g. compromised ISP) **disables DHCP(v6)-server** or classifies it as "homenet" \rightarrow border **firewall breach**

internal attacker runs **DHCP/v6 server** causing adjacent HNCP routers to announce it as uplink \rightarrow **MITM** on traffic directed to external (like rogue RA/DHCP(v6)-server on single-link homenet?)

 \rightarrow physical, link-layer or similar underlying security on every link

 \rightarrow OR manual border config (hncp-02 enforces advanced support)

Threats for HNCP payloads

multicast traffic (link-local UDP)
announcing unique device IDs and MD5-hashes of HNCP-state
only used to discover devices and changes, triggering unicast exchanges
→ no sensitive data so enough to rate-limit triggered unicast
exchanges?

unicast traffic (link-local UDP)

synchronizing HNCP state

eavesdropping, replaying, spoofing etc. is possible consensus-nature: even regularly announced state can be malicious \rightarrow manipulation of routing, naming or other payloads is possible

Securing HNCP payload

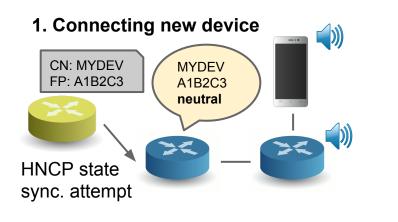
Isolating or securing router-to-router links does not require authentication or encryption of HNCP itself detailed interface categories (``leaf", ``guest", ...) can help → threatening devices (e.g. clients) are isolated from HNCP/IGP-traffic

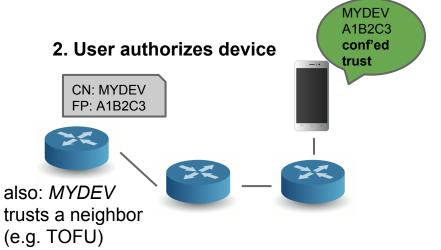
Authentication and Encryption of HNCP-traffic

(D?)**TLS** to not reinvent the wheel (or IPsec/IKE?)

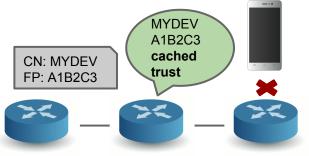
PSK, PKI usually provided by implementation

OR Trust Consensus using custom verification hook + new TLV

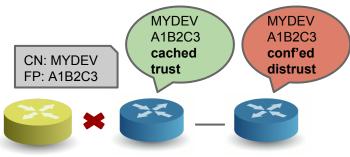

Certificate-based trust consensus


General Design (based on X.509 certificates)
Each device may announce a verdict (trusted, untrusted) on a certificate.
Effective Verdict: verd. with the highest priority among announced ones
→ A certificate is trusted iff. it has an effective verdict of "trust".

Types of Verdicts (in order of ascending priority) neutral, cached trust, cached distrust, configured trust, configured distrust


neutral: unknown trust state (used to announce join attempts)cached: last-known effective verdict (if no configured one is announced)configured: explicitly configured / acquired by trust bootstrap ceremony

Example: Trust Lifecycle



3. Device with verdict disconnects

4. A device is configured to distrust

Trust Bootstrap

Trust by Identification

Devices MUST offer an interface to list all known certificates in the homenet incl. their effective verdicts + allow to set a configured verdict.

Other possible ceremonies

Preconfigured Trust(if meaningful, no per-se trust of vendors etc.)Trust on Button Press(similar to WPS-PBC)Trust on First Use(if device has never been associated before)

 \rightarrow 2 ceremonies needed: new device \rightarrow homenet & homenet \rightarrow new device

Other protocols in the home

Security Aspects

IGPs et al. usually **unencrypted** with only **PSK-authentication**

- \rightarrow may influence usefulness of HNCP-encryption (information leaks)
- \rightarrow PSKs must be maintained to authenticate them

HNCP Managed-PSK

one device generates and shares a **random 32-Byte key** MUST be regenerated whenever any HNCP-device is distrusted **per-protocol-PSKs** derived with HMAC-SHA256 with predefined "secrets"

Do you have questions or feedback?

Please also visit <u>www.homewrt.org</u> for source code, binaries and some documentation.