Coupling Discrete Time Events to Continuous Time in RMCAT

(a.k.a. The Anatomy of a RMCAT RTT)

and Reasonable Bounds on the Time Rate of Change in Available Capacity

Michael A. Ramalho, Ph.D.

November 5, 2014

Talk Outline

- 1. Motivation (Prior Work On Test Plan Capacity Change Design)
- 2. RMCAT Discrete Time RTT Formalized
 - Fluid-flow (continuous-time) model and rigorous RMCAT RTT definition.
- 3. Infinitely Fast Capacity Change Downward
 - Unavoidable delay spike caused by infinitely fast capacity change
- 4. How Quickly ANY RMCAT Design Can Track Capacity Changes
 - Result is independent of algorithm type ("self-clocked" or "rate-based").
- 5. Reasonable Assumptions on Time-Rate-of-Change of Capacity
 - Worse-case RTT defines "tracking responsiveness" (w/o predictive component).
 - Squelching mechanisms required (self-clocked schemes do this automatically).
 - TCP Dynamics as a function of their RTT.
 - A reasonable bound on RTCP feed back intervals.
- 6. Implications for Adaptation with Wireless (WiFi/LTE/etc).

Motivation (Discussion at IETF 90)

Colin Perkins (Last Call on rmcat-cc-requirements):

 However, as I noted at IETF 90, I think the draft should also include a secondary requirement to <u>keep delay variation (jitter)</u> <u>down</u>, where possible, since larger delay variation needs larger receiver-side buffers to compensate, increasing overall latency.

A RMCAT Lab Discrete Time RTT (for Seq. No. = Z) Note: <u>Per-packet Feedback</u> (no RTCP yet)

RMCAT LAB: Measurement Framework (Seq. No. = Z)

Let's define <u>continuous time t</u> for fluid-flow modelling of the rate adaption component. That is, let $(t-t_{OFFSET})$ represent times offset from time t.

RMCAT: Continuous Time Modeling for Control Loop

d_r

Queue increases/decreases as difference in rates

Control Loop: Laplace Domain (linearize about equilibrium)

Key Control Loop Observations <u>At Equilibrium</u>:

- LTI System => Doesn't matter where prediction or rate control is (sender or receiver).
- Wherever it is, *it WILL take a minimum of a RTT¹ to make a difference at the queue*.

¹ – If the RTCP reporting interval is >> $(d_{f1}+d_{f2}+d_r)$, it will dominate. If not, it will look like delay noise to individual delay samples.

So ... What is the *Discrete-Time* RMCAT RTT Definition?

Queue Delay Variation During Downward Capacity Change Fastest Possible Rate Adaptation Example (imprudently quick)

Note: If we assumed one-way delay of 50 ms, 316 ms is minimum.

Queue Delay Variation During Downward Capacity Change Fastest Possible Rate Adaptation Example (imprudently quick)

Talk Outline

- 1. Motivation (Prior Work On Test Plan Capacity Change Design)
- 2. RMCAT Discrete Time RTT Formalized
 - Fluid-flow (continuous-time) model and rigorous RMCAT RTT definition.
- 3. Infinitely Fast Capacity Change Downward
 - Unavoidable delay spike caused by infinitely fast capacity change
- 4. How Quickly ANY RMCAT Design Can Track Capacity Changes
 - Result is independent of algorithm type ("self-clocked" or "rate-based").
- 5. Reasonable Assumptions on Time-Rate-of-Change of Capacity
 - Worse-case RTT defines "tracking responsiveness" (w/o predictive component).
 - Squelching mechanisms required (self-clocked schemes do this automatically).
 - TCP Dynamics as a function of their RTT.
 - A reasonable bound on RTCP feed back intervals.
- 6. Implications for Adaptation with Wireless (WiFi/LTE/etc).

How Quickly Can RMCAT Track Available Capacity Changes? Answer: It Depends on the RTT, Duh!

- The quickest time <u>a RMCAT flow</u> can possibly "measure" (and "react to") changes in capacity is bounded by <u>ITS</u> round-trip time.
- Thus the quickest time it can influence it's contribution to the queue after a change in capacity is thus bounded by <u>ITS</u> round-trip time.
- <u>Corollary</u>: RMCAT flows with different RTTs can react to changes on different time scales (which correspond to their individual RTTs). Just like TCP!
- A reasonable ASSUMPTION for the <u>fastest</u> time-rate-of-change in available capacity is one which could be tracked (i.e., measured and reacted to) by a RMCAT flow with <u>an assumed worst-case RTT</u> and <u>RTCP interval</u>.

A reasonable assumption bound for RMCAT time rate of change in available capacity

- Assume worst-case RMCAT RTT of ~250 ms (¼ sec).
- Highest capacity change "frequency" that is actionable is $f_{MAX} \approx 4$ Hz.
 - Capacity changes faster than this CANNOT be "seen/sensed/measured" and then "actionable" by a RMCAT flow with the "worst-case RTT".¹
- Ditto for ACK-based, "self-clocked", protocols like TCP, SCReAM too!
 - TCP can't know to stop within this time either; as they only stop after their ACKs stop.
 - TCP thus "pounds the queue" causing gross overflow events on long RTT connections too!
- Corollary: "Fast Response" is a matter of the <u>worst-case capacity</u> <u>change assumption</u> - not a fundamental property of "self-clocked" protocols.²

1 – If other information was known (e.g., form), predictive components could react quicker.

2 - Rebuttal to: http://conferences.sigcomm.org/sigcomm/2014/doc/slides/150.pdf

TCP Dynamics as a Function of the RTT

1 TCP: Voice Delay, 50 ms BE Queue

RTT Estimate ~ 50ms, fast reaction per unit time

1 TCP, Delay seen by Voice Packets

ACK-Gated RMCAT Proposals (a la Ericsson)

- On long-RTT connections, ACK-gated protocols will also hit the queue too hard and build up excess delay. They will "stop" quickly – but that is a matter of degree (by comparison to how rate-based designs) – not because of some more beneficial property of ACK-gated protocols.*
- Once a worst-case RTT assumption has been made, it imposes a theoretical constraint on how quickly <u>ANY RMCAT FLOW</u> can adapt to it.
 - Thus imposing a "hidden assumption" on the time-rate-of-change of capacity ANY RMCAT DESIGN on <u>the worst-case RTT can adapt to</u>.
- This, in turn, imposes a minimum RTCP spacing constraint:
 - For 250 ms RTT, $< \pi/2$ spacing (@4 Hz) implies $T_{RTCP} \le \sim 62.5$ ms.

Implications for WiFi/LTE/Wireless Adaptation

<u>Repeated/paraphrased from last slide:</u>

On long-RTT connections, ACK-gated protocols will also hit the queue too hard and build up excess delay. They will "stop" quickly – but that is a matter of degree (by comparison to rate-based approaches) – not because of some more beneficial property of "self-clocked" protocols over rate-controlled protocols.

Summary:

- We will need to develop better "squelching conditions" in future enhancements to our present RMCAT designs (i.e., when feedback stops and/or becomes irregular).
- <u>Complete squelch</u> is only prudent when there is <u>no impairment in feedback path</u>.
- Wireless challenges now become <u>a known second-order problem</u>; unless we want to limit RTT (not possible) or go to per-packet feedback (non RTCP approaches).

Summary

1. RMCAT Discrete Time RTT Formalized

• Fluid-flow (continuous-time) model and rigorous RMCAT RTT definition.

2. How Quick Can ANY RMCAT Design Can Track Capacity Changes

• Result is independent of algorithm type ("self-clocked" or "rate-based").

3. Reasonable Assumptions on Time-Rate-of-Change of Capacity

- Worse-case RTT defines "tracking responsiveness" (w/o predictive component).
- Like TCP, dynamics of RMCAT solution will be a function of their RTT.
- The feedback intervals and flow RTT will determine capacity tracking ability.
- Bounding feedback intervals and worst-case RTT effectively bounds best-case tracking.

4. Implications for Adaptation with Wireless (WiFi/LTE/etc).

• Squelching mechanisms required (self-clocked schemes do this automatically).