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Talk Outline 

1. Motivation (Prior Work On Test Plan Capacity Change Design) 

2. RMCAT Discrete Time RTT Formalized 

• Fluid-flow (continuous-time) model and rigorous RMCAT RTT definition. 

3. Infinitely Fast Capacity Change Downward 

• Unavoidable delay spike caused by infinitely fast capacity change 

4. How Quickly ANY RMCAT Design Can Track Capacity Changes 

• Result is independent of algorithm type (“self-clocked” or “rate-based”). 

5. Reasonable Assumptions on Time-Rate-of-Change of Capacity 

• Worse-case RTT defines “tracking responsiveness” (w/o predictive component). 

• Squelching mechanisms required (self-clocked schemes do this automatically). 

• TCP Dynamics as a function of their RTT. 

• A reasonable bound on RTCP feed back intervals. 

6. Implications for Adaptation with Wireless (WiFi/LTE/etc). 



Motivation (Discussion at IETF 90) 

Colin Perkins (Last Call on rmcat-cc-requirements): 
•  However, as I noted at IETF 90, I think the draft should also 

include a secondary requirement to keep delay variation (jitter) 
down, where possible, since larger delay variation needs larger 
receiver-side buffers to compensate, increasing overall latency.  
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Colin (and others) believed these 
might be artifacts of the algorithms 



A RMCAT Lab Discrete Time RTT (for Seq. No. = Z) 
Note: Per-packet Feedback  (no RTCP yet) 
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RMCAT LAB: Measurement Framework  (Seq. No. = Z) 

tn-2 tn-1 tn 
tk-2 tk-1 tk 

time 

Sequence number Z sent. 
Sequence number Z received (forward delay calculated here). 

t ack,Z is the earliest time that the queue 
measurement is available at source (new rate 

change can occur here). 

The time the queue was actually sampled is tqueue,Z = (tn+df1). 

t ack,Z 

Sequence number Z-1 sent. 

df1 df1 

Let’s define continuous time t  for fluid-flow modelling of the 
rate adaption component. That is, let (t-tOFFSET) represent times offset from time t. 

The effect of the rate change on the queue occurs df1 after the source 
made the rate change (a full RTT after the queue was sampled)! 



RMCAT: Continuous Time Modeling for Control Loop 
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Generates 

New Rate, r(t) Queue 
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q(t) = max [ q( t -    ) + (rat_queue(t) – C)    , 0 ] 

For small      ; 

Queue increases/decreases as difference in rates 

Also note: 
• rat_queue(t) =  rsend ( t – df1) 
• d(t) = q(t)/C 

When queue not emptied, it 
integrates the difference in 

rates (1/s in Laplace Domain). 



Control Loop: Laplace Domain (linearize about equilibrium) 
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Key Control Loop Observations At Equilibrium: 
• LTI System => Doesn’t matter where prediction or rate control is (sender or receiver). 
• Wherever it is, it WILL take a minimum of a RTT1 to make a difference at the queue. 

1 – If the RTCP reporting interval is >> (df1+df2+dr), it will dominate. If not, it will look like delay noise to individual delay samples. 



So … What is the Discrete-Time RMCAT RTT Definition? 
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Forward Delay = df1 + { d(t)|                } + df2 t = tSAMP 

RMCAT RTT (ti) |                                   = df1 + { d(t)|                             }+ df2 + dr t = tSAMP (seq no z) ti = tACK for seq Z received  

RMCAT RTT ( ti ) |                                      = df1 + df2 + dr + d(t – [dx + df2 + dr] ) , ti = tACK for seq z received 

where dx =  d(t)|                          t = tSAMP (seq no z) 



Queue Delay Variation During Downward Capacity Change 
Fastest Possible Rate Adaptation Example (imprudently quick) 

C i 
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Assume r(t) = Ci before t0 

t0 

Assume rate control estimates C (i+1) via the 
queue sample immediately after t0 and then 
sends at C(i+1) (or less) as soon as possible. 

t0 + RTT 

Minimum response time 
to affect queue. 

Minimum possible delay 
spike is caused by 
(C (i+1)- C i ) * RTT 

too many bits on queue. 

Example in IETF RMCAT Test Plan: 
Capacity: 2500 kbps -> 600kbps 
Assume RTT: 0.200 seconds (100 ms one-way) 
 
Minimum ADDITIONAL bits on queue before 
we can do anything about it 380000 bits. 
 
Queue must empty at 600 kbps rate. 
 
Thus minimum delay spike is 633 ms! 

Note: If we assumed one-way delay of 50 ms, 316 ms is minimum. 



Queue Delay Variation During Downward Capacity Change 
Fastest Possible Rate Adaptation Example (imprudently quick) 
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C i 

C (i+1) t0 t0 + RTT 

How Quickly Can RMCAT Track Available Capacity Changes? 
Answer: It Depends on the RTT, Duh! 

• The quickest time a RMCAT flow can possibly “measure” (and “react to”) 
changes in capacity is bounded by ITS round-trip time. 

• Thus the quickest time it can influence it’s contribution to the queue after 
a change in capacity is thus bounded by ITS round-trip time. 

• Corollary: RMCAT flows with different RTTs can react to changes on different 
time scales (which correspond to their individual RTTs). Just like TCP! 

• A reasonable ASSUMPTION for the fastest time-rate-of-change in available 
capacity is one which could be tracked (i.e., measured and reacted to) by 
a RMCAT flow with an assumed worst-case RTT and RTCP interval. 



A reasonable assumption bound for RMCAT 
time rate of change in available capacity 

t? t? + RTT 

C(t) 

CLocal_Max 

CMax_Change 
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• Assume worst-case RMCAT RTT of ~250 ms (¼ sec). 
• Highest capacity change “frequency” that is actionable is fMAX ≈ 4 Hz. 

• Capacity changes faster than this CANNOT be “seen/sensed/measured” and then 
“actionable” by a RMCAT flow with the “worst-case RTT”.1 

• Ditto for ACK-based, “self-clocked”, protocols like TCP, SCReAM too! 
• TCP can’t know to stop within this time either; as they only stop after their ACKs stop. 
• TCP thus “pounds the queue” causing gross overflow events on long RTT connections too! 

• Corollary: “Fast Response” is a matter of the worst-case capacity 
change assumption - not a fundamental property of “self-clocked” protocols.2 

 

2 - Rebuttal to: http://conferences.sigcomm.org/sigcomm/2014/doc/slides/150.pdf 

1 – If other information was known (e.g., form), predictive components could react quicker. 



14 14 

1 TCP, Delay seen by Voice Packets 

Near 100% Link Utilization (delay 30 ~ 80 ms) 

Queue emptied only 4 times* 

-Serialization delay for TCP packet ~ 11 ms 

Voice Only 

RTT Estimate ~ 50ms, 
fast reaction per unit time 

 TCP Dynamics as a Function of the RTT 
1 TCP: Voice Delay, 50 ms BE Queue 
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100% Link Utilization (delay 100 ~ 500 ms) 

Queue 
Never 
Emptied 

1 TCP, Delay seen by Voice Packets 

RTT Estimate now 
includes queuing delay ... 
subsequent rate increase 

reaction times are slowed. 

 TCP Dynamics as a Function of the RTT 
1 TCP: Voice Delay, 500 ms BE Queue 



ACK-Gated RMCAT Proposals (a la Ericsson)  

t0 t0 + RTT 

C(t) 

CLocal_Max 

CMax_Change 

CLocal_Min 

• On long-RTT connections, ACK-gated protocols will also hit the queue too 
hard and build up excess delay. They will “stop” quickly – but that is a 
matter of degree (by comparison to how rate-based designs) – not 
because of some more beneficial property of ACK-gated protocols.* 

• Once a worst-case RTT assumption has been made, it imposes a theoretical 
constraint on how quickly ANY RMCAT FLOW can adapt to it. 
• Thus imposing a “hidden assumption” on the time-rate-of-change of capacity ANY 

RMCAT DESIGN on the worst-case RTT can adapt to. 

• This, in turn, imposes a minimum RTCP spacing constraint: 
• For 250 ms RTT, < π/2 spacing (@4 Hz) implies TRTCP ≤ ~ 62.5 ms.  

 



Implications for WiFi/LTE/Wireless Adaptation  

t0 t0 + RTT 
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On long-RTT connections, ACK-gated protocols will also hit the queue too hard and 
build up excess delay. They will “stop” quickly – but that is a matter of degree 

(by comparison to rate-based approaches) – not because of some more 
beneficial property of “self-clocked” protocols over rate-controlled protocols. 

Repeated/paraphrased from last slide: 

Summary: 
• We will need to develop better “squelching conditions” in future enhancements to our present 

RMCAT designs (i.e., when feedback stops and/or becomes irregular). 
• Complete squelch is only prudent when there is no impairment in feedback path. 
• Wireless challenges now become a known second-order problem; unless we want 

to limit RTT (not possible) or go to per-packet feedback (non RTCP approaches). 



Summary 

1. RMCAT Discrete Time RTT Formalized 
• Fluid-flow (continuous-time) model and rigorous RMCAT RTT definition. 

2. How Quick Can ANY RMCAT Design Can Track Capacity Changes 
• Result is independent of algorithm type (“self-clocked” or “rate-based”). 

3. Reasonable Assumptions on Time-Rate-of-Change of Capacity 
• Worse-case RTT defines “tracking responsiveness” (w/o predictive component). 
• Like TCP, dynamics of RMCAT solution will be a function of their RTT. 
• The feedback intervals and flow RTT will determine capacity tracking ability. 
• Bounding feedback intervals and worst-case RTT effectively bounds best-case tracking. 

4. Implications for Adaptation with Wireless (WiFi/LTE/etc). 
• Squelching mechanisms required (self-clocked schemes do this automatically). 

 


