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Current Research Challenges
* Scalability in large BDP networks
e Low Latency Support In the Internet
* Per-User Fairness based on Congestion Policing

TCP SIAD: Algorithm Design

e Scalable Increase
* Adaptive Decrease

Evaluation
 Comparison in Single Flow Scenario
e Capacity Sharing

Conclusion and Outlook



< cONGEStion event

cwnd’_

congestion

Scalability ..epoch

TCP NewReno /

* is limited by theoretical limits
of the network bit error rate

1 3 Slow : Congestion Avoidance fme >
B(p) === |=— 9

RTT |2p Start

* needs long time to allocate new capacity
e.g. to raise from 5 to 10 Gbit/s with RTT 100ms and 1500 bytes packets > more than 1h!

—> Most proposed schemes scale much better but still depend on the BDP!

Congestion control should
* provide a fixed feedback rate independent of the link BDP
* allocate quickly newly available bandwidth (under changing network conditions)



Low Latency Support

Today’s Internet is mainly optimized for high through-put and low loss rates

—> Large buffers needed to provide sufficient space for TCP congestion control (worst case: BDP)
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—>Enable operators to configure small buffers and keep utilization high!
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Congestion control (cannot change the buffer configuration but) should
* keep the link utilization high even if small buffers are configured
* avoid a standing queue by emptying the buffers at every decrease



Per-User Congestion Policing

* TCP-friendliness should not be a requirement for congestion control

* Fairness should be enforce on a long-term per-user (not
instantaneous per-flow) basis
* E.g. based on (Ingress) congestion policing using Congestion Exposure (ConEx)
* It’s okay to grab a larger share of the capacity (for a limited time) if needed

Congestion control should
* provide an configuration knob to influence the amount of congestion



TCP SIAD: Design Goals

High Link Utilization independent of network buffer sizes

Avoid Standing Queue/Minimize Average Delay (however, still loss-based)
Speed-up for Bandwidth Allocation (under changing network conditions)
Fixed Feedback Rate independent of bandwidth (when self-congested)

Configurable Aggressiveness (when competing with other traffic)

can be used by a higher layer control loop to impact the capacity share at the cost of
higher congestion, e.g. for applications that need a minimum rate



Additive Increase Multiplicative Decrease
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Scalable Increase Adaptive Decrease (SIAD)
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* Adaptive Decrease adapts decrease factor § to queue size
 Scalable Increase recalculates a to realize fixed feedback rate
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Algorithm Design: SIAD

Scalable Increase (SI)
to receive the congestion feedback with a constant rate of Numppr RTTs

incthresh — ssthresh

a = , 1 < a < ssthresh
Numprr

Adaptive Decrease (AD)
to empty queue without causing underutilization or a standing queue

cwnd « cwnd,a, —1, cwnd =2 [on congestion notification]

Curr



Algorithm Design: Further Components

* Additional Decreases during congestion epoch
to drain the queue

* Fast Increase phase above Linear Increment threshold incthresh
to quickly allocate new bandwidth
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Scalable Increase (1)

1. Adapt cwnd as congestion event occurred about one RTT ago
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2. Trend calculation
trend = cwnd, g, — Prev_cwnd gy

prev_cwnd,,,,. mMaximum congestion window of previous congestion event



Scalable Increase (2)

3. Linear Increment threshold

incthresh = cwnd,,,, + trend, incthresh = ssthresh

4. Adaption of @

incthresh — ssthresh

a = , 1 < a < ssthresh
NumRTT
ssthresh: Slow Start threshold (= congestion window after reduction)
incthresh: Linear Increment threshold (see previous slide)

Numpgpr: configuration parameter for number of RTT between two congestion events



Scalable Increase (3)

Linear Increment phase

cwnd = cwnd + [per ACK]

cwnd

Fast Increase phase (if cwnd = incthresh)
1. Reset increase factor o to 1
2. Double increase factor a per RTT

a cwnd
, a =
cwnd 2

a= a-+ [per ACK]



Adaptive Decrease (1)

Backlogged packets in queue (see Vegas, Compound, H-TCP...)
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Adaptive Decrease

RTTCUTT

cwnd <« fcwndyg,, —1, cwnd = 2 [on congestion]

— only drains queue if all competing flow are synchronized



Adaptive Decrease (2)

Additional Decrease (if minimum RTT cannot be observed after one RTT)

RTT.,,:
1. cwnd = —=- ssthresh — 1
Curr
2. cwnd < cwnd — max(red, A o)
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dec_cnt: number of additional decrease that have already been performed



Simulation Setup

* Event-driven network simulator IKR SimLib with integration for virtual
machines IKR VMSimint (http://www.ikr.uni-stuttgart.de/IKRSimLib/Download/)

* Implementation in Linux kernel 3.5.7 (default Numpyr = 20)
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TCP SIAD’s Congestion Window Development
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link utilization [fraction]

Single Flow on 10 Mbit/s link

1

TCP Reno —=— Scalable TCP ——=—
TCP Cubic TCP lllinois

HS-TCP —=4— TCP SIAD (20) ——<—

H-TCP TCP SIAD (40) ——<—

______

095 r .,

0.9

085

0.8

e

i

02 04 06 08 1 12 14 16 18 2

scaling factor [BDP]

T
S

g 1
"~ 0.8
5 06
3 0.4

O
N

0

TCP Reno —=— Scalable TCP —=—
TCP Cubic TCP lllinois

HS-TCP —=— TCP SIAD (20) —<—

H-TCP TCP SIAD (40) — e

I - m

02 04 06 08 1 12 14 16 18 2

scaling factor [BDP]

—>TCP SIAD always fully utilizes link + has average queue fill of 0.5



loss event distance [s]

Single Flow with 0.5 BDP buffering
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—>TCP SIAD induces fixed feedback rate independent of link bandwidth



TCP SIAD’s Capacity Sharing
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Conclusion and Outlook

TCP SIAD provides

* high link utilization with small buffer and standing queue avoidance
» configurable fixed feedback rate

— Allows network operators to configure small buffers (or low marking
thresholds) and maintain high utilization!

Next

e TCP SIAD and ECN

* SimpleSIAD

* Higher layer control loop for e.g. real-time video



