TCP SIAD: Congestion Control
supporting
Low Latency and High Speed

Mirja Kihlewind <mirja.kuehelwind@tik.ee.ethz.ch>
IETF91 Honolulu ICCRG
Nov 11, 2014

Outline

Current Research Challenges
* Scalability in large BDP networks
e Low Latency Support In the Internet
* Per-User Fairness based on Congestion Policing

TCP SIAD: Algorithm Design

e Scalable Increase
* Adaptive Decrease

Evaluation
 Comparison in Single Flow Scenario
e Capacity Sharing

Conclusion and Outlook

< cONGEStion event

cwnd’_

congestion

Scalability ..epoch

TCP NewReno /

* is limited by theoretical limits
of the network bit error rate

1 3 Slow : Congestion Avoidance fme >
B(p) === |=— 9

RTT |2p Start

* needs long time to allocate new capacity
e.g. to raise from 5 to 10 Gbit/s with RTT 100ms and 1500 bytes packets > more than 1h!

—> Most proposed schemes scale much better but still depend on the BDP!

Congestion control should
* provide a fixed feedback rate independent of the link BDP
* allocate quickly newly available bandwidth (under changing network conditions)

Low Latency Support

Today’s Internet is mainly optimized for high through-put and low loss rates

—> Large buffers needed to provide sufficient space for TCP congestion control (worst case: BDP)
A A

NN /I/I/I/

: —— -
Link underutilization '™® standing queue time
—>Enable operators to configure small buffers and keep utilization high!

length

m

queue
o

queue length

Congestion control (cannot change the buffer configuration but) should
* keep the link utilization high even if small buffers are configured
* avoid a standing queue by emptying the buffers at every decrease

Per-User Congestion Policing

* TCP-friendliness should not be a requirement for congestion control

* Fairness should be enforce on a long-term per-user (not
instantaneous per-flow) basis
* E.g. based on (Ingress) congestion policing using Congestion Exposure (ConEx)
* It’s okay to grab a larger share of the capacity (for a limited time) if needed

Congestion control should
* provide an configuration knob to influence the amount of congestion

TCP SIAD: Design Goals

High Link Utilization independent of network buffer sizes

Avoid Standing Queue/Minimize Average Delay (however, still loss-based)
Speed-up for Bandwidth Allocation (under changing network conditions)
Fixed Feedback Rate independent of bandwidth (when self-congested)

Configurable Aggressiveness (when competing with other traffic)

can be used by a higher layer control loop to impact the capacity share at the cost of
higher congestion, e.g. for applications that need a minimum rate

Additive Increase Multiplicative Decrease

< cONGEStion event

cwnd’_

Exponential Increase (Slow Start) congestion
cwnd = cwnd + 1 [per ACK] i -.epoch

Additive Increase (Congestion Avoidance /////
- [per ACK]

cwnd = cwnd +

cwnd
for TPC NewReno: a0 =1 Slowr= Congestion Avoidance ime >
Start
Multiplicative Decrease (Fast Recovery) congestion window: cwnd [pkts]
cwnd = [cwnd [on congestion event]

for TCP NewReno: f = 0.5

cwnd >

Scalable Increase Adaptive Decrease (SIAD)

< cONQGEstion event 4 CONGEStION @VENE

cwnd >

congestion

epoch

| v |- | | congestion

l —— | .
Slow Congestion Avoidance time Slow Congestion Avoidance time

Start buffer size of one BDP Start smaller buffer

* Adaptive Decrease adapts decrease factor § to queue size
 Scalable Increase recalculates a to realize fixed feedback rate

' >

Algorithm Design: SIAD

Scalable Increase (SI)
to receive the congestion feedback with a constant rate of Numppr RTTs

incthresh — ssthresh

a = , 1 < a < ssthresh
Numprr

Adaptive Decrease (AD)
to empty queue without causing underutilization or a standing queue

cwnd « cwnd,a, —1, cwnd =2 [on congestion notification]

Curr

Algorithm Design: Further Components

* Additional Decreases during congestion epoch
to drain the queue

* Fast Increase phase above Linear Increment threshold incthresh
to quickly allocate new bandwidth

UA Fast
* Trend calculation of cwnd,,, 4, 5 increase
. | P congestion
to Improve convergence incthresh : | epoch
ELinearIncrementé 4
: o : :.-"' 3
Fast F § time

Increase Addional Decrease

Scalable Increase (1)

1. Adapt cwnd as congestion event occurred about one RTT ago

(sznd if @ < cwnd U cwnd < ssthresh
cwnd]] cwnd
3 if cwnd zinsthresh N a = >
Cwndmax = cwnd — K incthresh—ssthresh . _
NumgrT if cwnd =z insthreshna=1
a
k 2 if cwnd > incthresh
a

else

2. Trend calculation
trend = cwnd, g, — Prev_cwnd gy

prev_cwnd,,,,. mMaximum congestion window of previous congestion event

Scalable Increase (2)

3. Linear Increment threshold

incthresh = cwnd,,,, + trend, incthresh = ssthresh

4. Adaption of @

incthresh — ssthresh

a = , 1 < a < ssthresh
NumRTT
ssthresh: Slow Start threshold (= congestion window after reduction)
incthresh: Linear Increment threshold (see previous slide)

Numpgpr: configuration parameter for number of RTT between two congestion events

Scalable Increase (3)

Linear Increment phase

cwnd = cwnd + [per ACK]

cwnd

Fast Increase phase (if cwnd = incthresh)
1. Reset increase factor o to 1
2. Double increase factor a per RTT

a cwnd
, a =
cwnd 2

a= a-+ [per ACK]

Adaptive Decrease (1)

Backlogged packets in queue (see Vegas, Compound, H-TCP...)

 RTT(t) — RTTmun

q = RTT(0) cwnd

Adaptive Decrease

RTTCUTT

cwnd <« fcwndyg,, —1, cwnd = 2 [on congestion]

— only drains queue if all competing flow are synchronized

Adaptive Decrease (2)

Additional Decrease (if minimum RTT cannot be observed after one RTT)

RTT.,,:
1. cwnd = —=- ssthresh — 1
Curr
2. cwnd < cwnd — max(red, A o)
1

red = cwnd
Numprr — dec_cnt

incthresh — cwnd

aTLGW -

Numpry — decqpe — 1

dec_cnt: number of additional decrease that have already been performed

Simulation Setup

* Event-driven network simulator IKR SimLib with integration for virtual
machines IKR VMSimint (http://www.ikr.uni-stuttgart.de/IKRSimLib/Download/)

* Implementation in Linux kernel 3.5.7 (default Numpyr = 20)

100*rate
TCP sender 1 bTCP receiver 1
VM w/ TCP/IP stack VM w/ TCP/IP stack
access q size rate delay .

: delay 1] > TTTPO-0O—

) 100*rate
TCP sender N ’TCP receiver N
VM w/ TCP/IP stack VM w/ TCP/IP stack

access
delay N

TCP SIAD’s Congestion Window Development

0.5 BDP buffering 10 Mbit/s
2500 600
100 Mbit/s
2000 | 50 Mbit/s
— 20 Mbit/s T
S 1500 10 Mbit/s o
] o
S 1000
2 I3
500
T 500 T
2 2
i q,
S 5
o 14731 I 0 |
8_ Al i’ 4 k g_ d 4 i Y At A5 1Al
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
time [s] time [s]

11/11/2014 M. Kihlewind - TCP SIAD @ IETF91 Honolulu ICCRG 19

link utilization [fraction]

Single Flow on 10 Mbit/s link

1

TCP Reno —=— Scalable TCP ——=—
TCP Cubic TCP lllinois

HS-TCP —=4— TCP SIAD (20) ——<—

H-TCP TCP SIAD (40) ——<—

095 r .,

0.9

085

0.8

e

i

02 04 06 08 1 12 14 16 18 2

scaling factor [BDP]

T
S

g 1
"~ 0.8
5 06
3 0.4

O
N

0

TCP Reno —=— Scalable TCP —=—
TCP Cubic TCP lllinois

HS-TCP —=— TCP SIAD (20) —<—

H-TCP TCP SIAD (40) — e

I - m

02 04 06 08 1 12 14 16 18 2

scaling factor [BDP]

—>TCP SIAD always fully utilizes link + has average queue fill of 0.5

loss event distance [s]

Single Flow with 0.5 BDP buffering

100

rate [Mbps]

. TCP Reno —=— Scalable TCP =1

| TCP Cubic TCP lllinois |
- HS-TCP —=— TCP SIAD (20) —>— 1
f=_H-TCP TCP SIAD (40) > |

B

1 10 100
rate [Mbps]

—>TCP SIAD induces fixed feedback rate independent of link bandwidth

TCP SIAD’s Capacity Sharing

20 Mbit/s, 0.5 BDP buffer 10 Mbit/s, 1 BDP buffer
400 TCP SIAD (20) —— 200 TCP SIAD (40) ——
350 TCP SIAD (20) —— TCP Cu
300 150
g 250 2
S 200 | - S 100 e W’ I i
= 150 | | 3 lﬂ | , ” '“ M r
100 il i ..MW. ,uW(I il Wl ,uw 50 mmf’ ” " ’ ‘ f
50 | '
0 0
400 el oY — 200 "TCP SIAD (30 ——
350 | TCP SIAD (20) —— 1 TCP Cubic
300 |] 150
g 250 | g
g 200 g It e M“W i |
3 150 s I G b AR g
100 ‘M «“ “H M " | M’MWM m Mu 50 { ' ! - !
50
%0 300 600 ° 0 100 200 300 400 500 600
time [s] time [s]

11/11/2014 M. Kiihlewind - TCP SIAD @ IETF91 Honolulu ICCRG

Conclusion and Outlook

TCP SIAD provides

* high link utilization with small buffer and standing queue avoidance
» configurable fixed feedback rate

— Allows network operators to configure small buffers (or low marking
thresholds) and maintain high utilization!

Next

e TCP SIAD and ECN

* SimpleSIAD

* Higher layer control loop for e.g. real-time video

