
Understanding and Improving 
TCP for Web Performance

Tobias Flach

Nandita Dukkipati, Andreas Terzis, Barath Raghavan, 
Neal Cardwell, Yuchung Cheng, Ankur Jain, Shuai Hao, 

Ethan Katz-Bassett, Ramesh Govindan 



2



3



Sometimes users wait for a long time to get a response
4



Amazon found that every additional 100ms delay in 
loading a page costs them 1% of sales

5



Motivation

● Goal: Optimize communication means to improve web 
performance (correlated with more revenue)

● Challenges: network and protocol complexity

● Focus here: Troubleshoot and improve TCP

6



Overview
What aspects of TCP are limiting Web access performance, and 
how can we overcome these limitations?

7

“Reducing Web Latency: The Virtue of Gentle Aggression” (SIGCOMM 13)

Identify performance 
bottlenecks and root causes

Mitigate root causes through 
protocol or structural changes

“Understanding TCP Flow 
Performance at Scale Through 

Behavioral Signatures”
(in progress)



Overview

A. Reducing Web Latency:
The Virtue of Gentle Aggression

B. Understanding TCP Flow Performance at Scale 
Through Behavioral Signatures

8



We improved Google’s
response time by 23%

● Across billions of client requests, we improved the mean 
response time by 23%.

● We achieved this despite ONLY speeding up the 6% of 
transfers that experienced packet loss.

● Improvement is in the tail: We halved latency in the 99th 
percentile.

● For latency-sensitive services faster transfers mean a better 
user experience.

9



Ways to Reduce Latency

High loss, 
high delay

10



Ways to Reduce Latency

Improve the proximity of services to the user

Leverage multi-stage connections

Low loss, 
multiplexed

High loss, 
shorter delay

11



Basic TCP Mechanisms

1

2 - 3

4 - 7

Slow Start

4 - 7

7

Retransmission 
Timeout (RTO)

4 - 7

4

Fast Retransmit

12



Basic TCP Mechanisms

1 - 7

Slow Start

Larger 
window 
through 

multiplexing

4 - 7

7

Retransmission 
Timeout (RTO)

Shorter RTTs 
→ faster loss 

detection

4 - 7

4

Fast Retransmit

Shorter RTTs 
→ faster loss 

detection

13



Evaluating TCP Performance

Low loss, 
multiplexed

High loss, 
shorter delay

Analyzed billions of flows 
carrying Web traffic between 

Google and clients 
14



Transfers With Loss Are Too Slow

Loss makes Web latency 5 times slower

Delays caused by TCP 
loss detection and 

recovery

6% of transfers between 
Google and clients 

are lossy

15



Many Expensive Retransmission Timeouts

77% of losses are recovered by retransmission timeouts

Retransmission timeouts 
can be 200 times larger 

than the RTT

Caused by high RTT 
variance, or lack of 

samples

16



... Caused by Tail Packet Loss

(Single) tail packet drop is very common

Tail packets are twice as 
likely to be dropped 

compared to packets 
early in a burst

35% of lossy bursts 
observe only one packet 

loss
17



Our Motivation and Goal

Our Goal: Approaching the ideal of loss detection and 
recovery without delay.

Without making the protocol too aggressive.

Loss significantly slows down transfers.
Due to frequent recovery via slow RTOs.

Caused by tail loss.

18



Setting Frontend
Server

Backend
Server

Private NetworkPublic Network

Controlling server only

Prefer solutions that do not 
require client changes and are 
compatible with middleboxes

Controlling client, server,
and network

Can incur more overhead 
since latency-sensitive traffic 
is a small portion of traffic mix

19



Setting Frontend
Server

Backend
Server

Private NetworkPublic Network

Reactive
Trigger fast retransmit 
by retransmitting the 
tail packet early

Proactive
Avoid retransmissions 
through packet 
duplication

Corrective Add redundancy to enable recovery without retransmission,
or trigger fast retransmit

20



Setting Frontend
Server

Backend
Server

Private NetworkPublic Network

Reactive
Trigger fast retransmit 
by retransmitting the 
tail packet early

Proactive
Avoid retransmissions 
through packet 
duplication

Corrective Add redundancy to enable recovery without retransmission,
or trigger fast retransmit

21



Reactive

Wait time 
until RTO

1

1 - 3 Receiver does not know about the loss 
and therefore cannot send

signals back

22



Reactive

Wait for 
two RTTs

1

1 - 3

2

3

Fast 
retransmit

Retransmit new 
packet or previous 

(tail) packet after two 
RTTs

Can trigger selective 
acknowledgement 

indicating loss

Speeds up loss 
detection

23



Reactive: Detecting Masked Losses

Wait for 
two RTTs

1 - 3

3

Cannot ignore the 
case where a packet 
loss is recovered by 
the Reactive probe

Count ACKs and 
reduce congestion 
window if only one 
ACK for tail packet 

received

24



Reactive: Detecting Masked Losses

Wait for 
two RTTs

1 - 3

3

1 - 3

3

One ACK only:
Loss → Reduce 

congestion 
window

Two ACKs:
No loss

ACK 2

ACK 3

ACK 2

ACK 3
ACK 3

25



Setting Frontend
Server

Backend
Server

Private NetworkPublic Network

Reactive
Trigger fast retransmit 
by retransmitting the 
tail packet early

Proactive
Avoid retransmissions 
through packet 
duplication

Corrective Add redundancy to enable recovery without retransmission,
or trigger fast retransmit

26



Setting Frontend
Server

Backend
Server

Private NetworkPublic Network

Reactive
Trigger fast retransmit 
by retransmitting the 
tail packet early

Proactive
Avoid retransmissions 
through packet 
duplication

Corrective Add redundancy to enable recovery without retransmission,
or trigger fast retransmit

27



Proactive

Wait time 
until RTO

3

1 - 3

28



Proactive

1
Avoid almost all retransmissions 

through packet duplication
1 (DUP)

2 (DUP)

3 (DUP)

2

3 Duplicates are used if original 
transmission was lost

Avoids loss detection and recovery

29



A/B Experiment Setup
Frontend

Server
Backend

Server

Reactive Proactive

Experimented in production environment
serving billions of queries

(millions of queries are sampled)

Default Default

30



Impact of Reactive and Proactive

15-day experiment, 2.6 million queries sampled:
mean response time reduced by 23%

99th percentile response time reduced by 47%

Impact of Proactive:
Retransmission rates on the backend connection

dropped from 0.99% to 0.09%

Impact of Reactive:
Almost 50% of retransmission timeouts on the frontend 

connection are converted to fast retransmits

31



Corrective: The Middle Way

Reactive speeds up 
loss detection, but still 

requires recovery

Proactive avoids
loss detection and 
recovery, but has
100% overhead

Corrective

32



Corrective: 
Forward Error Correction in TCP

Wait time 
until RTO

1

1 - 3

33



Corrective: 
Forward Error Correction in TCP

1 - 3

ENCODED

Encodes previously transmitted 
segments in few coded segments

XOR coding can recover single 
packet loss at the receiver

Signaling of recovery status to 
the sender to enforce congestion 

control or fast retransmit
No loss 

detection 
required

Speeds up loss detection
and recovery

34



Evaluation: Corrective

Network 
emulator

Synthetic workloads
(fixed-size single queries)

Web page downloads
(complex multi-resource queries)

35



Loading nytimes.com with Corrective

Tail latency reduced by 
more than 20%

But: performance 
slightly worse on loss-

free connections

36



Dealing with Middleboxes

Protocol changes need to account for middlebox interference

We designed our modules for middlebox compatibility or 
graceful fallback to standard TCP

37



Dealing with Middleboxes

Unknown option in data 
packet is stripped

Require option in all 
packets

ACK number is rewritten 
for unseen sequences

Resend lost segment to 
update middlebox state

Modified retransmission 
payload is rejected

Detect tampering through 
checksum

38



● In a measurement study analyzing billions of flows in Google’s 
production environment, we found that performance deteriorates 
drastically when encountering packet loss

● Analysis of loss patterns motivated three designs to
improve latency: Reactive, Proactive, and Corrective

● Reactive and Proactive improved
Google’s mean response time by 23%

● Reactive and Corrective are IETF Internet Drafts;
Reactive is implemented and enabled by default in Linux 3.10

Summary: Reducing Web Latency

39



What aspects of TCP are limiting 
Web access performance, and how 
can we overcome these limitations?

40



Overview

A. Reducing Web Latency:
The Virtue of Gentle Aggression

B. Understanding TCP Flow Performance at Scale 
Through Behavioral Signatures

41



Understanding TCP Flow Behavior

… can be difficult, because:

● TCP’s complexity has increased dramatically over the last 
couple of decades, e.g. added features like:
○ Window scaling
○ PAWS
○ Segmentation offload
○ Prevention of bursty transmissions
○ Early congestion indicators

● Often working with packet captures only → have to reverse 
engineer the protocol behavior solely based on packets 
observed on the wire 42



Same Rtx Ratios, Different Impact

● Could observe same retransmission ratios in two scenarios 
but the underlying causes and the impact on performance 
are widely different.

● Bufferbloat: Routers use large queue buffers to absorb 
traffic bursts, but a single flow can fill up the buffer leading 
to excessive queuing delays → slow recovery in case of 
packet loss

● Reordering induced by packet-based load balancers: 
Multiple paths with different delays → out-of-order delivery 
causing spurious retransmissions which require time to 
recover and impact throughput

43



Analyzing Performance Anomalies

Your site is 
too slow!

What’s going 
on in these 

traces?
Bufferbloat!

Investigate 
responsible servers 
and capture packet 

information

Manual analysis
of the packet traces

44



Analyzing Performance Anomalies:
Automatic, at Scale

What’s going 
on in these 

traces?

Sample servers 
capture packet 

information

Automatic analysis 
of the packet traces

45



Automatic Packet Analysis

Packet 
Collection

Tagging

Problem 
Identification

● Monitoring engine capturing all packets 
for sample set of connections

● Use behavioral signatures to tag packets, 
connections, and queries

● Correlate tags with performance metrics
● Manual analysis through visualization 

and database queries

46



Analysis Building Blocks:
Behavioral Signatures

● Per packet
○ Basic signatures based on header information extracted from 

few packets
○ Examples: acknowledgements, packet loss

● Per flow
○ Aggregates data from many packets revealing behavior 

observed over longer time periods
○ Examples: bufferbloat, traffic policing

● Per application entity (e.g. HTTP query)
○ Incorporates non-TCP information, e.g. payload content, 

application-layer feedback
○ Examples: query response time, video stalling 47



Next Steps
● Collect packets at scale on web service front-ends for 

multiple weeks to record transient and persistent 
performance anomalies

● Identify root causes for traffic patterns associated with tail 
performance (e.g. tail query response time)

● Derive a set of protocol and/or network changes to address 
the performance problems and possibly quantify their impact

48



Conclusion

● Good Web performance requires good TCP performance

● Need to understand the causes of poor tail performance 
enabling the design of new solutions

● Our approach:
○ Automate the analysis of packet traces at scale to find 

problems
○ Design solutions tailored to the architectures of modern Web 

services
○ Deployed loss recovery mechanisms have large impact on 

Google performance
49



Understanding and Improving 
TCP for Web Performance

Tobias Flach
http://nsl.cs.usc.edu/~tobiasflach

Nandita Dukkipati, Andreas Terzis, Barath Raghavan, 
Neal Cardwell, Yuchung Cheng, Ankur Jain, Shuai Hao, 

Ethan Katz-Bassett, Ramesh Govindan 


