Router Buffer Sizes in the WAN draft-ksubram-Imap-router-buffer-sizes-00

Kamala Subramaniam

Microsoft

IETF 91 Honolulu Hawaii

PROBLEM

- WHAT?
 - Quantify Router Buffer Sizes in the WAN
 - Link latencies ~40 to 150 milliseconds

- WHY?
 - Drive down \$/GB
- HOW?
 - Mine, and analyse empirical data

PREVIOUS WORK

- Rule of Thumb
 - Buffer Size = 2RTT * C
 - 2RTT is the Round Trip Time
 - C is the capacity of bottleneck link
 - Holds true for a single TCP flow OR few synchronized TCP flows
- Appenzeller
 - Buffer Size = (2RTT * C)/ sqrt(N)
 - N is the number of concurrent flows in a link
 - Works for a few hundred unsynchronized flows

OBSERVATIONS FROM PREVIOUS WORK

- Theoretical in nature
- Holds true in simulated testbeds
- Does not hold true in links running on a providers backbone
 - Trans-pacific and trans-atlantic links of latencies of 150 and 90 ms with link utilization of < 30% show packet discards with small buffers
 - WAN links within NA with large buffers and link utilization of 60—70% show packet discards
- Need for new work

MAIN ISSUE

Lack of a standardized way to mine empirical data

• Lack of a concise method to present mined data in a readable fashion

Data required for study of Router Buffer Sizes

- 1. Number of Concurrent Flows, N
- 2. Length of the Flow, L
- 3. Packet Discards, P
- 4. Reason for Packet Discards, R
- 5. Resolution of Time Interval, T
- 6. 5 Tuple Flow Identity, I

Conclusion

• Study of router buffer sizes is important, and incomplete

Need to mine empirical data for said study is important

Need to standardize these methods would be useful