JSON Encoding of Data
Modeled with YANG

draft-ietf-netmod-yang-json-01

Ladislav Lhotka
(lIhotka@nic.cz)

13 November 2014




Major Changes

e Metadata encoding moved to a separate draft:
draft-lhotka-netmod-yang-metadata-00

e JSON encoding is now defined directly rather than via XML-JSON
mapping.
e Rules for namespace encoding have changed.

e |- JSON compliance.



Namespace Encoding

Namespace encoding is as before: module_name : node_name.

Rules for its placement have changed: Namespace ID must be used

1. for all root data nodes,
2. whenever parent node’s namespace is different,

3. nowhere else.

Example: "ietf-interfaces:interfaces": {
"interface": {
"name": "ethQ",

"ietf-ip:ipv4": {
"ip": "198.51.100.1",


Ladislav Lhotka


Ladislav Lhotka



Instance Identifiers

Currently, all node names in an instance-identifier value have to be qual-
ified with namespace ID (module name).

/ietf-interfaces:interfaces/ietf-interfaces:interface|
ietf-interfaces:name="ethQ"' ]
Proposal: Use analogical rules as for instance encoding, i.e. namespace

ID is used if (and only if) it differs from the parent’s.

/ietf-interfaces:interfaces/interface|
name='ethQ']/ietf-ip:ipv4/ip



1-JSON

draft-ietf-json-i-json-02:
“I-JSON is a restricted profile of JSON designed to maximize interoper-
ability and increase confidence that software can process it successfully

with predictable results.”

I-JSON Compliance Issues:
e permitted characters,
e 64-bit numbers,

e values of binary type.



Character Set

I-JSON: “Object member names, and string values in arrays and object
members, MUST NOT include code points which identify Surrogates or
Noncharacters.”

Due to XML legacy, YANG string and enumeration types permit some
Unicode noncharacters:

e block U+FFDO. .U+FDEF in Basic Multilingual Plane

e last two codepoints in each of 16 supplementary planes, e.g.
U+1FFFE and U+1FFFE.

Noncharacters are reserved for internal (private) use, and normally not
interchanged.

Solution:
Noncharacters are likely to be banned in YANG 1.1, see issue Y56:

https://svn.tools.ietf.org/svn/wg/netmod/yang-1.1/issues.html#sec-56



64-bit Numbers

I-JSON: “I-JSON messages SHOULD NOT include numbers which ex-
press greater magnitude or precision than an IEEE 754 double preci-

sion number provides, for example TE400 or
3.141592653589793238462643383279.

In particular, an I-JSON sender MUST NOT expect a receiver to treat
an integer whose absolute value is greater than 92007199254740991
(i.e., that is outside the range (-2 +1,2> — 1)) as an exact value.”

Solution:
Values of int64, uint64 and decimal64 types are encoded as strings.

(Other numeric values are still encoded as JSON numbers.)



Encoding of binary Values

I-JSON: “When it is required that an I-JSON protocol element contain
arbitrary binary data, it is RECOMMENDED that this data be encoded in
a string value in base64url; see Section 5 of [RFC 4868].”

YANG binary type prescribes base64, which is perfectly fine - there is
no need to have encoded binary values URL-safe.

Solution: Keep using baseb4.



Open Issue #1: union type

JSON carries partial type information in the encoding.

leaf foo {
type union {
type uint8;
type string;
}
}

application/yang.data+xml application/yang.data+json

<foo>42</foo> —> number, "foo" : 42 — number,
<foo>42.5</foo0> = string. "foo" : "42.5" = string,
"foo" :42.5 — error.

Is it @ problem?


Ladislav Lhotka


Ladislav Lhotka



Open Issue #2: anyxml

“An anyxml instance is encoded as a nhame/value pair. The value can be
of any valid JSON type, i.e. an object, array, number, string or any of the

I n

literals ‘true’, ‘false’ and ‘null’.
Example: For
anyxml foo;

this is a valid instance:

foo [true, null, true]

For JSON, anyxml means in fact anyjson.

This should be solved in YANG 1.1, see issue Y34:

https://svn.tools.ietf.org/svn/wg/netmod/yang-1.1/issues.html#sec-34

10



