Peer Mount

Eric Voit
Alex Clemm

13-Nov-2014

Four Drafts

Tomorrow

Requirements for Peer Mounting of YANG subtrees from Remote Datastores
draft-voit-netmod-peer-mount-requirements-01

(Requirements & Use Cases showing how/why Peer Mount.)

Mounting YANG-Defined Information from Remote Datastores
draft-clemm-netmod-mount-02
(Technology draft. Multiple implementations including OpenDaylight MD-SAL)

Cloud SLA YANG Model incorporating Peer Mount Semantics
draft-tripathy-cloud-sla-yang-model-00
(Example YANG model using Peer Mount syntax. Will show running Demo)

Subscribing to datastore push updates
draft-netmod-clemm-datastore-push-00
(Pub/Sub mechanism for YANG objects, applicable well beyond Peer Mount)

Requirements Draft

Requirements for Peer Mounting of YANG subtrees from Remote Datastores
draft-voit-netmod-peer-mount-requirements-01
E. Voit, A. Clemm, S. Mertens

 Example Use Case
 “Peer Mount” Basics
« Contents of Requirements Draft

Network Services delivered via a federated set of
devices in a Cloud

Network acts as a unit
for targeted abstractions

g

Location agnostic many-to-many policing

SLA protections between tenants

Cloud SLA spanning a set of Network Elements

pata pata
center 1 centern

[vw | B &
sl
L 4 -

B & Federated
Counter

- Dynamically adjust policers as traffic moves about the cloud

- Forward to DDoS Appliance if Bandwidth Threshold hit

Cloud Policer + DDoS Thresholding

100 M

SN

SOM

ES M

K

TN

B3 M

60 M

Bn

SOmn

AS M

O N

BH

30 M+

Currently running
on OpenDaylight

From 2 rate 3 color policer by Device, to “n” rate “m” actions for a Cloud

“PolicerRates-for-all-NEs*

2040 200% 2100 T a0 w20

W “Totalofpolicedrate”

————————
21:30
W "10.64.67.147.PolicedRat eByDP" B "10.64.67.225 PolicedRat eByDP" @ “ConfigPolicedRate”

Device policers dynamically updated

against Cloud SLA of 100Mb/s

Ddos-Scrubbar-Stats
soa nt

’”"% r—'llrl-‘n
700 M | | |d
o n . :
m,w . : ; =t
550!\%
|
=5
ey

.
non%
e n}
—i

10N

100K

0N
|

i (14
Il
40

[R R]

600 T06:20 T o6 00 0630 0 0640 06 %
B "CurNetvorkBandutilisation” B "DdosThresholdLimat*

|
9 4

0 "PwdBsForDDoSScrubbing*

DDoS Scrubber inserted when Traffic
Spikes over 600 Mb/s Threshold

What is needed from a Solution

Laser Focus on Application Developer Simplicity

App developers want distributed database and convergence complexities hidden.
And they certainly don’t want to learn and invoke protocols to get remote objects.

Single Authoritative owner for an Object

Applications don’'t want to care which Network Element across a set of devices is
the authoritative owner of a particular replicated object.

Multiple controllers and overlapping domains is a reality. Apps still don't care.

Transparent Subscriptions and Caching

Applications need timely access to remote information, which can necessitate the
introduction cache infrastructure.

Network Abstractions already span Devices
IETF has specified many Controllers. Industry is adding more.

There are classes of applications which expose multi-device abstractions across overlapping
sets of devices.

High Availability Topology Maintenance Cloud Functionality
Q\Q, 3 VRRP OSPF Designated Router Cloud Policer
+®®~6°\\® | mLACP/ICCP BGP Route Reflection Traffic Redirection
S Anycast-RP BGP LS
device W?F’ * OPEN domain
1l ETF

Layered abstractions build on each other, they must interoperate and converge

Peer Mounting the Authoritative Copy
Network Wide Data, Locally Addressable

« Excerpt of authoritative network-wide datastore
assembled on each device

Datastore

« Local & remote objects treated identically by users/apps

+ Device type agnostic: peering of Controller &
Network Element Intelligence

Wl Datastore ~ Locally addressable copy
Element of authoritative object

a.k.a.: Peer Mount

Peer Mounting the Authoritative Copy
“Mount” is a Remote Object Binding

Datastore
- Application requests object from local Datastore %"'d’*)
« Target Data Node Mount request is sent to object owner MO:ZLZOCim(Moumed)
« On Demand: Subtree containing requested object !823}232

is returned; object passed back to application

Mount Client)~ 22507

« Optional: Transparent caching mechanisms + Pub/
Sub speeds performance as needed Transoort

. . s .., Netconf, HTTP, Multicast
* Periodic: Object update passed every ‘X’ seconds. &-§- Wakan ulticgst)

Timeframes can be synchronized across devices Network

Optional
Mount Server 572 Ele/rm_g‘;

* On Change: Push Object when there us change %dw Datastore

Node C (Target Data Node)
object 1
object 2

on Mount Server

Underlying technologies have broad applicability and can
be lightly coupled with Peer Mount

Peer Mounting the Authoritative Copy
Transparent remote visibility also viable for device based Apps

« Auto-discovery of link, group, or area misconfigurations. Controller optional.

« Applications have visibility into one or more exposed local YANG abstractions

Cnge notification seen here
Check
core Network Network

Element 1 Element 2

Datastore Datastore

NE 1 %E 2 NE 2
Running Config Running Config Running Config

Ethernet 1 . Ethernet 2 Ethernet 2

Frame Size 1500 _J Frame Size Jumbo Frame Size Jumbo

Ethernet 1 Ethernet 2

Remote running config mounted from here Change made here

Blue — decent shape
Yellow — Work in progress

Requirements Draft

1. Business Problem 5.4. Mount Filter
2. Terminology 5.5. Auto-Negotiation of Peer Mount Client QoS
3. Solution Context 5.6. Datastore Qualification
3.1. Peer Mount 5.7. Local Mounting
3.2. Eventual Consistency and YANG 1.1 5.8. Mount Cascades
4. Example Use Cases 5.9. Transport
4.1. Cloud Policer 5.10. Security Considerations
4.2. DDoS Thresholding 5.11. High Availability
4.3. Service Chain Classification, Load 5.11.1. Reliability
Balancing and Capacity Management 5.11.2. Alignment to late joining peers
5. Requirements 5.11.3. Liveliness
5.1. Application Simplification 5.11.4. Merging of datasets : o
5.2. Caching Considerations 5.11.5. Distributed Mount Servers : AT eX|§t|ng
5.2.1. Caching Overview 5.12. Configuration mpleme_ntqhon_s of
5.2.2. Pub/Sub of Object Updates 5.13. Assurance and Monitoring Data DistribLition

Services (DDS)

5.3. Lifecycle of the Mount Topology
5.3.1. Discovery and Creation of Mount
Topology
5.3.2. Restrictions on the Mount Topology

Peer Mount
Benefits Seen in current prototypes

Application » Distributed YANG object trees available to applications
[« Intersecting domain abstractions

« Maijor code size reduction — data access only to local Datastore
« Transparent access to data independent of location
« Caching and polling becomes hidden infrastructure

Application
Simplification

* Unsolicited & periodic object Pub/Sub with transparent caching

Performance . L
 Ability to cascade updates across multiple tiers of Mount

» Avoid need for redundant models for local and remote information
Synchronization Receipt of unsolicited push of Authoritative object change
« Multiple Controller support

Misconfiguration » Authoritative copy is explicitly known
Types Eliminated « Mount & monitor the actual state of the network (not just one-time “ACK”).

Peer Mount Technology Draft

Mounting YANG-Defined Information from Remote Datastores
draft-clemm-netmod-mount-02
A Clemm, J Medved, E Voit

(Multiple implementations including OpenDaylight MD-SAL)

Purpose

Allow YANG Datastores to reference information in remote datastores

YANG Server (Netconf, RESTconf) allows its clients/applications to access data that is
conceptually federated across a network

Incorporate information from remote systems into consolidated view
Visibility and validation of parameters with cross-device dependencies
Location transparency*

*Caveats apply with regards to cross-network transactions. Focus on data retrieval.

Why - draft-voit-netmod-peer-mount-requirements
Ease for app developers/users
Federated information from a single source, without need for additional brokering/middleware
Avoid need for redundant models
NMS Model Layering: “device”-level concepts must be reiterated at “network” layer where needed
Heavy systems, slow TTM, less standards adoption as a result
“It can be used also for controllers”

Controller/device boundaries are blurry, less relevant

Datastore mount concept

Mount client:
Contains mount points at which to attach remote subtrees into data tree
Requests whose scope contains remote data are proxied/forwarded to remote system
Acts as application/client to the remote system

Mount server
Authoritative owner of the data
May not be aware that mounting occurs (mount client is “just another application”)

Notes
Caching optimizations possible - draft-netmod-datastore-push-00
Circular mounting prohibited

Focus on retrieval of remote data
NETCONF-style network transactions per ACID results in issues

We can keep configuration out of scope for now

Notifications and RPCs currently outside scope

Open Daylight - Model-Driven SAL

NB REST API NB REST API NB REST API

: Transformer/ Platform Service Network Service
Internal Plugin Adapter Plugin Plugin RESTCONF

JAVA SAL APIs (Generated)

Network
NE
E
Tunnels l
K ',
i Links Nodes EndPoints ,/’ I~ |,
1 . able S /
¢ ’ oes <.) ,
\ / Table >, Config stats .
g) P - -
1 I g
1
\ I 7 -
N Flow Flow Flow y \ Flow ow i I, M D SAL
JAVA SAL APIs (Generated) — l'l' J
. 1 L 1 - =% '

OfConfig / OVSDB J_

Network Elements

* OPENDAYLIGHT www.opendaylight.org

YANG modules defines YANG mount
Usage example extensions + data model for

mountpoint management

rw controller-network
+-- rw network-elements YANG extensions:
+-- rw network-element [element-id] .
e e G el Mountpoint: Defined under a containing
L Module data node (e.g. container, list)
+-- M interfaces structure
in Target: References data node that

identifies remote server

list network-element { Subtree: Defines root of remote subtree
key "element-id’; to be attached

leaf element-id {
type element-ID;
}

container element-address {

<network-element>

}
<element-id>NEl</element-id>

mnt:mountpoint "interfaces" {

mnt:target "./element-address"; <element-address> </element-address>
mnt:subtree "/if:interfaces"; <interfaces>
} <if:interface>
g Mountpoint declaration <if:name>fastethernet-1/0</if:name>

<if:type>ethernetCsmacd</if:type>

<if:location>1/0</if:location>

</if:interface>

Instance information

Mountpoint management

rw mount-server-mgmt

Mountpoints can be system-administered
Applications&users are not exposed to this

System administration can add bindings
Update on-demand, periodic, on-change

Not shown:
Mount bindings - data update subscriptions

+-- rw mountpoints

| +-- rw mountpoint [mountpoint-id]

| +-- rw mountpoint-id string

| +-- rw mount-target

| | t--: (IP)

| | | +-- rw target-ip vyang:ip-address

| | +--: (URI)

| | | +-- rw uri vyang:uri

| | +--: (host—-name)

| | | +-- rw hostname vyang:host

| | +-- (node-1ID)

| | | +-- rw node-info-ref mnt:subtree-ref

| | +-—- (other)

| | +-- rw opaque-target-id string

| +-- rw subtree-ref mnt:subtree-ref

| +-- ro mountpoint-origin enumeration

| +-—- ro mount-status mnt:mount-status

| +-- rw manual-mount? empty

| t-- rw retry-timer? uintl6 Mount policies grouping

| +-—- rw number-of-retries? uint8

+-— rw

+-—- rw

+—-— rw

+-— rw
RPCs for

global-mount-policies
manual-mount? empty
retry-time? uintlo6
number-of-retries? uints8
manual mount, unmount

Summary of changes since -01

Caching considerations and mount bindings — tie-in with datastore push
Usage guidelines - modeling best practices
Editorial improvements throughout

TBD issues:

System administration — keep target as part of mountpoint declaration?
Remove possibility for configuration? (currently usage discouraged/limited but still permitted)

Example Usage of Mount

Cloud SLA YANG Model incorporating Peer Mount Semantics
draft-tripathy-cloud-sla-yang-model-00
A Tripathy, E Voit, A Clemm

« “Peer Mount” Semantics used in a Model
« Worthy of Note

 Demo (Model in Action)

YANG Model including Mount Semantics

+--rw ietf-cloud-sla
+--rw policies
+--rw policy [policy-name]

+--rw policy-name string
+--rw policy-max-bw? uint64
+--ro network-aggregate-bw? uint64
+--rw nes
+--rw ne [ne-id]
+--rw ne-id string

+--rw policing-policies
| +--rw policed-bandwidth* [ifref]
| +--rw ifref mounted-interface-ref
| +--rw bandwidth? uint64
+--ro interfaces-state
+--M interface-statistics

Set Multi-device abstraction value
Derived () of mounted device counters)

Get interface info from elsewhere
Add a policy object, continually update

Mount of Device info (extract RFC 7223)

Worthy of Note

Mounting RFC 7223 interface stats = more objects than desired
Value of Mount Filter highlighted

Network Element counters exposed under policy
Read-only copy is effectively an alias (making application writing easier)

Interface Ref enables adding centrally managed information with Mounted objects
New objects can in turn be Mounted back to distributed devices

Subscription to counters superior to continual requests
Current standards don'’t cover. One reason for Push draft.

Cloud Policer Demo
Cloud Service on Federated Network Devices

OpenDaylight MD-SAL Controller
Cisco Asr9K Network Elements
Peer Mounting of Network Element YANG counters by controller

Peer Mounting of controller application derived Policer Rate by Network
Elements

Controller application does nothing but read and write from local YANG
abstraction

Summary of First Three Drafts

Some Mailing List Q&A

How can this scale and converge?

YANG is for devices only

YANG should support ACID only

IETF doesn’t care about controllers

“Peer Mount” should be read only.

The Object Management Group has been standardizing a
Data Distribution Service (DDS). It is very similar. Current revenue is ~
$100M+ and growing.

Implementation in OpenDaylight and elsewhere have multi-device
abstractions. IETF has multi-device abstractions. If IETF doesn’t serve
these needs, the technology will fork. Unnecessarily.

It is true that WG in charge of Netconf+Netmod architecture is unclear.
RFC6244 asserts a device boundary which has been surpassed by
reality. We should get clarity for evolving charters.

Eventual consistency is industry proven for classes of problems. This
includes convergence between some abstract and granular policies.

Declaring multi-device abstractions out-of-scope means that certain
applications won't be portable between controllers and Network Devices.
In any case, the IETF has defined controllers for years.

Agree. Write is possible, but very hard. So let’s ignore it for now.

Recommended Actions

Netconf will be analyzing “Peer Mount” drafts in interim meetings. Work with
Netconf and Ops AD to apportion WG ownership and charters appropriately.

Based on output of (1), explore netmod Charter change to include multi-device
abstractions. (e.g., something like Peer-Mount)

End Day 1

Subscribing to datastore push updates
draft-netmod-clemm-datastore-push-00.txt

Motivation

Many applications require continuous updates to datastore contents
— Mount clients (peer mount): caching of remote data
— Service assurance: continuous monitoring

— Big Data: analyze network state

* Periodic polling has limitations (known from SNMP)
— Additional load on network and devices
— Lack of robustness, dealing with missed polling cycles

— Difficult calibration, synchronization of polling cycles across network
(makes polled data difficult to compare)

Current interactions with datastore are request/response based
— RFC 6470 defines configuration change notifications
— YANG datastores contain increasingly operational data

Solution Requirements (1/2)

* Provide push mechanism as alternative to polling
* Configuration and management of subscriptions
— Create/Delete
— Subscription scope
* Operational data
* Subtrees and filters
— Subscription policy
* Periodic
* On change (with dampening)
— Optional: subscription monitoring
— Optional: suspend/resume

Solution Requirements (2/2)

* Negotiation capability
— Resource limitations: not every subscription may be supported
— Implementation limitations (on change may be difficult)
— Negotiate update frequency, size, policy (on change vs periodic
* Tie-in with security
— RFC 6536/NACM — receive updates only for authorized data
* Work in conjunction with Netconf/RESTconf/YANG framework
— Leverage RFC 5277 notification capability

— Possibility to decouple transport and subscriptions
Allow for pub/sub, multicast transports at a later point, outside scope

Subscription Model

+--rw datastore-push-subscription

module: ietf-datastore-push

+-—-rw stream string
+--rw subscription-id subscription-identifier
+--rw (filter)?

| +--:(subtree)

| | +--rw subtree-filter Selected discussion items
| +--:(xpath) RWvsRO

| +--rw xpath-filter yang:xpathl.0 and create method
+--rw (notification-trigger) (edit vs.

| +--:(periodic) <create-subscription>
|| +--rw period yang:timeticks On-change subpolicies options or
| +--:(on-change) choices

| t-—rw (change—policy). (next revision) “on-change” feature

| +--: (update-dampening) _— Delta policy

| | +--rw period yang:timeticks

| +--: (delta-policy)

| +--rw delta uint32

+--rw start-time? yvang:date-and-time

+--rw stop-time? yang:date-and-time

Subscription Negotiation

Leverage RFC 5277 <create-subscription>

Server may reject a subscription request

— Implementation limitations (e.g. on-change)

— Resource limitations Selected discussion items
(e.g. update size, frequency) * <create-subscription> vs edit-

config
Subscription throttling via

guarantee) suspend/resume

Response to include “acceptable” parameter settings (no

Additional notifications to indicate if server cannot keep
“subscription promise)

Optional: client throttling of subscription via suspend/
resume

Push Data Stream and Transport

e Push-update notifications

— Subscription correlator
» Ties update to a specific subscription

— Data node with datastore update

* Per subscription
* Filtered per NACM rules

* Leverage <notification> element (per RFC 5277)

e Alternative transport mappings conceivable but outside scope

Conclusion

There is a need for a mechanism for datastore push updates, and subscribing to
such updates

Drivers

— Peer Mount

— Service Assurance

— Operational data increasingly part of YANG data models

— Move beyond SNMP-style polling-based management

Properties of the solution

— Data model at its core = Netmod

— Fits in with YANG/Netconf/REStconf framework
— Addresses subscription, negotiation, transport
— Addresses requirements, PoC exists

Ask: Adopt as WG Document

Backup

lechnolc
Why Netconf Event Notifications (RFC 5277) is not a full solution

Not Pub/Sub
Pre-dates YANG
Tied to Netconf, not to the YANG model.

Want data to be distributed should be agnostic to transport protocol
Different boxes could use different protocols under the covers

No mechanisms for time synchronized delivery across domain

Application developer simplicity
Transparent caching: requires additional mechanisms to ensure single view across domain

Business Imperative

Virtualization = explosion in Objects
Existing

_ _ Mechanisms

50%+ of outages from mis-config won't Scale

Peering of Controller
& Network Element
Intelligence

Speed to activation too slow

Mechanize logic in human brains

Evolving choices in abstraction

CLI API GUI Easy Button

