
Verification of NFV Services :
Problem Statement and Architecture

draft-shin-nfvrg-service-verification-00

M-K. Shin, ETRI
K. Nam, Friesty

S. Pack, Korea Univ.
S. Lee, J. Yi, ETRI

Proposed NFVRG Meeting@IETF91, Honolulu, Hawaii

Programmable Infrastructure

SDN/NFV
Controller

Orchestrator	

Computing/Network

Infrastructure

 Network service Descriptions
(High-level Programming/ Yang Modeling + Compiler) 	

NBAPIs

VNF1

VNF2b
VNF4a

VNF3

End
Point

End
Point

VNF2a

VNF2c

VNF4b

Virtualization

A Network Compiler that
translates network service
description in which 3rd Parties
as well as Operators define what
they want from the infrastructure
and compiles it into low level
instructions (e.g., Network
Controller/OpenStack primitives)
for network service components	

Problem Statement (1/2)
(Key Properties to be checked)

1.  Dependencies of Network Service Components
Ø  NFV components (e.g., NFVI, VNFs, Orchestrator, Network Controller,

etc.) have intricate dependencies that make operation incorrect.

 2.  Loop-Free in VNF FGs
Ø  In VNF FGs, an infinite loop

construction should be avoided
and verified.

3.  Policy and State Consistency
Ø  When the policy is changed, the policy should be reconfigured in

VNF service nodes as soon as possible. If the reconfiguration
procedure is delayed, inconsistent policies may exist in service nodes.

Problem Statement (2/2)
(Key Properties to be checked)

4.  Load Balancing and Optimization among VNF Instances

5.  Performance Bottleneck

6.  Security Hole

7.  More general requirements (esp., related to service functions
chains) can be also found at draft-boucadair-sfc-
requirements-05

Note that some of properties above, such as load balancing, optimization,
performance, etc. should be monitored and checked together by MANO operations.

Minimal Requirements
"   R1 : It should be able to check global and local properties and

invariants. (E.g., Loop-freeness and resource isolation between
VNFs can be regarded as global. The policies that are related only
to the specific network controllers or devices are local.)

"   R2 : It should be able to access to the entire resource DBs as well as
network states whenever verification tasks are started.

"   R3 : It should be independent from specific solutions and
frameworks, and APIs.

"   R4 : It should process standard protocols such as Netconf, YANG,
OpenFlow, I2RS, etc. and northbound and southbound interfaces
that are related network configurations, and used by OSS.

Note that Verification Service and Verification Manager in the NFV MANO should communicate
using APIs to accomplish the verification tasks.

Computing
Hardware	

Storage
Hardware	

Network
Hardware	

Hardware resources

Virtualisation Layer

Virtualised

Infrastructure
Manager(s)
	

VNF
Manager(s)	

VNF 2	
	

OSS/BSS	
	

NFVI

VNF 3	
	

VNF 1	
	

Virtual
Computing	

Virtual
Storage	

Virtual
Network	

EMS 2	
	

EMS 3	
	

EMS 1	
	

Orchestrator

Service, VNF and Infrastructure
Description	 Verification

Service

Network

States
DB
	

Verifier
	

Property
Library
	

Compiler &
Interpreter
	

APIs
	

Verification Framework
MANO

Verification
Manager

Verification APIs Example
"   Verification Manager (in NFV MANO)	

v  set_properties(properties or invariants)	
Ø  It sets a list of properties to be checked. After calling this API, verification tas

ks are automatically started whenever configurations are changed	
Ø  It returns a structure consists of the result (true or false) and explanation in ca

se of false (e.g. properties are already set, conflictions)	

v  get_properties() returns a list of properties set in the NFV MANO	
v  get/set_network_configuration gets or sets global network configurati

ons required for VNFs

"   Verification Service	
v  verify (property, virtual_network, vnf)	

Ø  parameters: 	

Ø  returns a structure consists of verification result(true or false), and explanatio
n or counter example in case of false	

Challenging Issues
"   Finding infinite loops

"   General solutions for the infinite loop can lead to intractable problem (e.g.
the halting problem). To make the verification practical and minimize the
complexity, some of the restrictions are required.

"   Real-time verification
"   A few invariants can be checked in real-time but it would be impossible if the

size of VNFs increases or properties checked are complex.

"   Languages and their semantics
"   Network service descriptions in NFV need to be precisely expressed using

appropriate semantics (e.g., formal method). Languages and semantic models
optimized to the verification framework need to selected or newly developed.

Back-up slides

Our Approach – Formalism

Formal verification The act of
proving or disproving the correctness of
designs or implementations with respect to
requirements and properties with which they
must satisfy, using the formal methods or
techniques

Network Formalism A formal
description is a specification expressed in a
language whose semantics are formally
defined, as well as vocabulary and syntax.
The need for a formal semantic definition
means that the specification language must be
based on logic, mathematics, etc., not natural
languages.

Our Verification Theory and
Tool Set (VeriSDNFV)

The goal is to provide a formal foundation for verification of SDN/NFV-enabled services.	

VeriSDNFV Tool Set

pACSR (Process Algebra Lang.)
𝑷 ≔ 𝑵𝑰𝑳 | 𝑨: 𝑷 | 𝒆. 𝑷 | 𝒃𝒆 → 𝑷 | 𝑷𝟏 + 𝑷𝟐 | 𝑷𝟏 || 𝑷𝟐 | [𝑷]𝑰 | 𝑷\𝑭 | 𝑷\\𝑰 | 𝑪(𝒙88⃗)	

𝒆 ≔ (τ, 𝒗𝒆) | (𝒍? , 𝒗𝒆) | (𝒍!, 𝒗𝒆) | (𝒍? 𝒙, 𝒗𝒆) | (𝒍! 𝒗𝒆𝟏, 𝒗𝒆)	

𝑨 ≔ ∅ | {𝑺}	

𝑺 ≔ (𝒓, 𝒗𝒆) | (𝒓, 𝒗𝒆), 𝑺	

Syntax	 Description	

NIL	 A process that executes no action(i.e., it is deadlocked)	

A:P	 To execute a timed, resource-consuming action A, consume one ti
me unit, and proceed to the process P. 	

e,P	 To execute the instantaneous event e, and proceed to P. 	

P1+P2	 A non-deterministic choice between P1 and P2 which is subject t
o priority arbitration. 	

P1||P2	

The parallel composition of P1 and P2 in which the events from P
1 and P2 synchronize or interleave while the timed actions from P
1 and P2, if they do not share any resource, reflect the synchrono
us passage of time. 	

[P]l	 The close operator, to produce a process that uses the resources
in I exclusively.	

P\F	 The restriction operator, to restricts events with labels in F from
executing. 	

P\\l	 To represent the behavior of P in which the identities of resource
s in I are concealed. 	

C	

A process constant with a certain arity. Each process constant C

with arity n is associated with a process definition of the form C
(x )≝P , where x  is a vector of n variables. 	

be->P	 A conditional process term which behaves like P if the boolean ex
pression be evaluates to true, or NIL if be is false. 	

P(x) := if matchSrcIP(x,source_IP)àch!x.nil
S := ch?y.nil
Sys := (P(x) || S)/{ch}
….

An Example of OpenFlow Flow table’s Operations	

pACSR (Process Algebra Lang.)

NFV(x) := ServiceChain || PacketFlow(x)
ServiceChain := {}*:HDVC_S3?.ServiceChain +
 replicated?.ServiceChain_R
ServiceChain_R := {}*:HDVC_R_S2?.ServiceChain_R +
 replicated?.ServiceChain_R
PacketFlow(x) := {}*:{PACKETFLOW}:SW1_P3(x)
SW1_P3(x) := {}*:if SW1_P3_C1(x)
 à {SW1_P1}:R1_P1(x)
 else IDLE
SW2_P1(x) := {}*:if SW2_P1_C1(x)
 à {SW2_P2}:Host3(x)
 else if SW2_P1_C2(x)
 à {SW2_P3}:Host4(x)
 else IDLE
SW2_P2(x) := {}*:if SW2_P2_C1(x)
 à {SW2_P1}:R1_P1(x)
 else IDLE
SW2_P3(x) := {}*:if SW2_P3_C1(x)
 à {SW2_P1}:R1_P1(x)
 else IDLE
 …..

An Example of Service Functions Chains
(End-to-end Virtual Content Delivery Service)	

Compute/Memory/Storage

Infrastructure
Network

VNFs (Virtualized Network Functions) :
Firewall, DPI, SSL, Load Balancer, NAT, AAA

 SD Video Content, HD Video Content, etc. Physical Link

Virtualization

SDN/NFV-enabled end-to-end network service

Logical Link
NFVI (NFV Infrastructure) :

End-to-end SDN/NFV Services

VNF1

VNF3
VNF5a

VNF4

FG-1

End
Point

End
Point

VNF2a

VNF2b

VNF5b
FG-2

memory storage

OpenStack Controller/Orchestrator

Virtualization Layer	

OpenStack Agent SDN Switch

SDN Controller

compute network

Verification Layer	

Related Works
Product/Project	 Goals 	

VeriFlow 	 To verify network-wide invariants in real time
(Data plane verification, no formal technique) 	

NICE 	 To test/debug OpenFlow applications
(Debugger for simplified OF-based models) 	

Frenetic	 To develop network programming languages with Rigoro
us semantic foundations 	

Abstraction for	
Network Update	

To develops a formal model of OpenFlow networks	

Header Space Analysis (
HSA)	

To allows to statically check network specifications and co
nfigurations (e.g., reachability failures, forwarding loops a
nd traffic isolation and leakage problems)	

