
Consolidating Network
Virtualization Indirections

Sharon Barkai IETF91 SDNRG

•  Network virtualization structure and dynamic
programmability progressed beyond "Controller"

•  On its own "Controller" is not a scale structure, it has
exponential complexity and cap issues per net-hop

•  The scaled structure is achieved using scoped
virtualization indirection interfaces (NVI)

The SDN Scale Challenge

Controllee

Controller

Controllee Controllee Source>> >>Dest

<<State Awareness Pressure Multiplies Per Hop

NVI:

A given well known direct interface is enhanced
with a programable standard based i direction

construct seamless to both legacy ends

NVI1 ID-Location
•  Source <=> Network <=> Dest

•  NVE <=> Underlay <=> NVE

•  Allows endpoints to show-up anywhere, no prefix "zip-
code" zoning limitation, datacenter for hosting, nfv..

NVI2 Sub-Service
•  Source <=> Network <=> Dest

•  NVE <=> Underlay <=> NVE

•  SFC <SFFs & Functions> SFC

•  Allows seamless chaining of middle-boxes between
source and dest, seamless to source, dest, functions

NVI3 Class-Instance
•  Source <=> Network <=> Dest

•  NVE <=> Underlay <=> NVE

•  SFC <SFFs & VIPs> SFC

•  Elastically Allocated Actual IPs

•  These (recursive) indirection constructs are not a "free-
format" or anything goes flow programming, But they do
help scale SDN per each one NVE, SFF, ADC ..How?

•  A controller-contrôlée pair can govern each such
mechanism, this scales consistently, as long as the
global context can be shared between the pairs

How Does NVI Scale SDN

NVE
Controller

NVE
Controllee

NVE
Controller

NVE
Controllee Source>> >>Dest

<-- ID Location Mapping Data -->

How Does NVI Scale SDN

SFF
Controller

SFF
 Controllee

SFF
Controller

SFF
 Controllee Function1>> >>Function2

<-- Sub Service Meta Data -->

How Does NVI Scale SDN

SLB
Controller

SLB
 Controllee

SLB
Controller

SLB
 Controllee

Moving
Client >>

>>Elastic
Server

<-- Client Instance Affinity Data -->

However
•  Implementing and deploying each of these NVI

RFCs separately will result in extreme inefficiencies

•  Though solutions will be dynamic and utilized, the
multi-hop high latency factor may be critical

Example: Programming the network for Carrier-Services between the
Access and the next peering provider network

8.2

8.1.
7.1...

7.2

Carrier
Spine2

Carrier
Spine1

Logical Chain1 Logical Chain2

Inet

.

•  Mobility Management - stationary context for moving phones
•  Subscriber Management - Quality/class of service queuing, AAA
•  TCP Optimization - jitter buffers and window scaling utilization
•  Video caching and transcoding - steer and redirect video streams
•  Filters and protections - firewalls, parental control, honey pots
•  Analytics - records of TCP flows, flow quality, HTTP flow tracking
•  Header enrichment - profiling users, revenue share, 800 data flows
•  ...

.

NVEs Separate the scaling of Resources & the scaling of Locations Any
resource can be instantiated on any rack, racks still scale by subnets

Logical Chain1 Logical Chain2

Inet
8.2

8.1.

7.1.. 8.1.

7.2... 8.1.

7.1... 8.2.

7.2... 8.2.

7.1. 8.2.

7.2... 8.2.

7.1.. 8.1.

7.2... 8.1. 1.1.1.1

1.1.1.2

1.1.2.1

1.1.2.2

1.1.3.1

1.1.3.2

1.1.4.1

1.1.4.2

Carrier
Spine2

Carrier
Spine1

1.1.1.x 1.1.2.x 1.1.3.x 1.1.4.x

7.1...

7.2

NVEs Map IDs to Locations!
All NVEs are meshed !

SFFs implement a service with function chains, map Flow
Instances to functional-middle-box virtualized resources

Logical Chain1 Logical Chain2

Inet
8.2

8.1.

7.1.. 8.1.

7.2... 8.1.

7.1... 8.2.

7.2... 8.2.

7.1. 8.2.

7.2... 8.2.

7.1.. 8.1.

7.2... 8.1. 1.1.1.1

1.1.1.2

1.1.2.1

1.1.2.2

1.1.3.1

1.1.3.2

1.1.4.1

1.1.4.2

SFF

SFF

Carrier
Spine1

Carrier
Spine2

1.1.1.x 1.1.2.x 1.1.3.x 1.1.4.x

7.1...

7.2

Worst Case "Hot Potato" per functional hop From F8.1 to F8.2 instances:
NVE - NVE - SFF1 - NVE - NVE - SFF2 - NVE - NVE - SLB - NVE - NVE

Logical Chain1 Logical Chain2

Inet
8.2

8.1.

7.1.. 8.1.

7.2... 8.1.

7.1... 8.2.

7.2... 8.2.

7.1. 8.2.

7.2... 8.2.

7.1.. 8.1.

7.2... 8.1. NVE

1.1.1.2

1.1.2.1

NVE

1.1.3.1

1.1.3.2

1.1.4.1

1.1.4.2

SFF

SFF

Carrier
Spine2

Carrier
Spine1

1.1.1.x 1.1.2.x 1.1.3.x 1.1.4.x

7.1...

7.2

 Map-Reduce NVI at
Consolidated Ingress

•  Source <=> Network <=> Dest

•  NVE <=> Underlay <=> NVE

•  SFC <SFFs & VIPs> SFC

•  Map&Encap Decap ActualIP

Best Case: Single Hop ToR-XTR consolidation, Single Hop ToR-DHT lookup

Logical Chain1 Logical Chain2

Inet
8.2

8.1.

1.1.1.x 1.1.2.x 1.1.3.x 1.1.4.x

7.1.. 8.1.

7.2... 8.1.

7.1... 8.2.

7.2... 8.2.

7.1. 8.2.

7.2... 8.2.

7.1.. 8.1.

7.2... 8.1.

ETR!
Hardware !

Carrier
Spine2

Carrier
Spine1

7.1...

7.2

Singe Hop Indirection Aggregation !
Single Hop Lookup !

<< DHT PerFlow>>

Map

 By Sharing Controller API
and Global Context

•  Global context: Mapping Authority for ID-Location,
(mappable) Service Meta-Data for middleBoxes, and
(mappable) Source-VIP affinity for load-balancing,
(mappable) landmarks for segment-routing etc.

•  Upon flow start or PacketIn a flow handler is
dynamically selected from the controller lib

•  The most specific flow handler will perform all
source-dest-application VNI resolutions

•  Including ID-Location, Subscriber-Service, Service-
Instance.. n-tuple and specific VIP dependencies

•  All resolutions must use RFC based modules so
next hop NVI aggregation is interoperable

Thank You

