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•  Network virtualization structure and dynamic 
programmability progressed beyond "Controller"  

•  On its own "Controller" is not a scale structure, it has 
exponential complexity and cap issues per net-hop 

•  The scaled structure is achieved using scoped 
virtualization indirection interfaces (NVI) 



The SDN Scale Challenge 
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NVI:  

A given well known direct interface is enhanced 
with a programable standard based i direction 

construct seamless to both legacy ends   



NVI1 ID-Location 
•  Source      <=>         Network     <=>        Dest 

•                    NVE <=> Underlay <=> NVE 

•  Allows endpoints to show-up anywhere, no prefix "zip-
code" zoning limitation, datacenter for hosting, nfv..  



NVI2 Sub-Service 
•  Source      <=>         Network     <=>        Dest 

•                    NVE <=> Underlay <=> NVE 

•                     SFC <SFFs & Functions> SFC 

•  Allows seamless chaining of middle-boxes between 
source and dest, seamless to source, dest, functions 



NVI3 Class-Instance 
•  Source      <=>         Network     <=>        Dest 

•                    NVE <=> Underlay <=> NVE 

•                     SFC <SFFs & VIPs> SFC 

•                Elastically Allocated Actual IPs                        



•  These (recursive) indirection constructs are not a "free-
format" or anything goes flow programming, But they do 
help scale SDN per each one NVE, SFF, ADC ..How? 

•  A controller-contrôlée pair can govern each such 
mechanism, this scales consistently, as long as the 
global context can be shared between the pairs 



How Does NVI Scale SDN 
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How Does NVI Scale SDN 
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How Does NVI Scale SDN 
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However 
•  Implementing and deploying each of these NVI 

RFCs separately will result in extreme inefficiencies 

•  Though solutions will be dynamic and utilized, the 
multi-hop high latency factor may be critical  



Example: Programming the network for Carrier-Services between the  
Access and the next peering provider network  
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•  Mobility Management  - stationary context for moving phones  
•  Subscriber Management - Quality/class of service queuing, AAA 
•  TCP Optimization - jitter buffers and window scaling utilization 
•  Video caching and transcoding - steer and redirect video streams 
•  Filters and protections - firewalls, parental control, honey pots 
•  Analytics - records of TCP flows, flow quality, HTTP flow tracking 
•  Header enrichment - profiling users, revenue share, 800 data flows 
•  ...   

. 



NVEs Separate the scaling of Resources & the scaling of Locations Any 
resource can be instantiated on any rack, racks still scale by subnets  
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All NVEs are meshed  !



SFFs  implement a service with function chains, map Flow 
Instances to functional-middle-box virtualized resources 
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Worst Case "Hot Potato" per functional hop From F8.1  to F8.2 instances: 
NVE - NVE - SFF1 - NVE - NVE - SFF2 - NVE - NVE - SLB - NVE - NVE  
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 Map-Reduce NVI at 
Consolidated Ingress 

•  Source      <=>         Network     <=>        Dest 

•                    NVE <=> Underlay <=> NVE 

•                         SFC <SFFs & VIPs> SFC 

•                  Map&Encap     Decap  ActualIP  



Best Case: Single Hop ToR-XTR consolidation, Single Hop ToR-DHT lookup 
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 By Sharing Controller API 
and Global Context 

•  Global context: Mapping Authority for ID-Location,
(mappable) Service Meta-Data for middleBoxes, and 
(mappable) Source-VIP affinity for load-balancing, 
(mappable) landmarks for segment-routing etc. 



•  Upon flow start or PacketIn a flow handler is 
dynamically selected from the controller lib 

•  The most specific flow handler will perform all 
source-dest-application VNI resolutions  

•  Including ID-Location, Subscriber-Service, Service-
Instance.. n-tuple and specific VIP dependencies 

•  All resolutions must use RFC based modules so 
next hop NVI aggregation is interoperable 



Thank You 


