TCP and SCTP RTO Restart

draft-ietf-tcpm-rtorestart-04

Per Hurtig, Anna Brunstrom, Andreas Petlund, Michael Welzl

2014-11-10

REDUCING INTERNET TRANSPORT LATENCY

Outline

RTO Restart

Updates to the draft

Algorithmic Changes

Experimental Results and Implementation

RTO Restart

- As the RTO timer is restarted on an incoming ACK [RFC6298, RFC4960], the effective RTO often becomes RTO = RTO + RTT[+delACK]
- RTO restart adjusts the RTO so that retransmissions are performed after exactly RTO seconds
- The modified restart is only applied when FR can not be used

Updates to the draft

- Changed the algorithm to allow RTOR when there is unsent data available, but the cwnd does not allow transmission.
 - change discussed at IETF 90
- Changed the algorithm to not trigger if "RTO T_earliest" ≤ 0, to avoid that ACKs to previous retransmissions trigger premature timeouts.
 - problem discussed on tcpm mailing list
- Made minor adjustments throughout the document to adjust for the algorithmic change.
- Improved the wording throughout the document.

Algorithmic Changes

When an ACK is received that acknowledges new data:

- 1. Set T_earliest = 0.
- 2. If the total number of **outstanding and previously unsent** segments is less than an RTOR threshold (rrthresh), set T_earliest to the time elapsed since the earliest outstanding segment was sent.
- 3. Restart the retransmission timer so that it will expire after (for the current value of RTO):
 - a) RTO T_earliest, if RTO T_earliest is > 0.
 - b) RTO, otherwise.

Experimental Results and Implementation

- Experimental results on the performance of RTOR presented at last meeting, complemented with info on spurious retransmissions here
 - Fully controlled fixed-size flows with tail loss: no spurious retransmissions
 - Realistic loss trace-driven background traffic (fraction spurious):
 - * Baseline: 2.2×10^{-4}
 - * RTOR: 2.9×10^{-4}
 - Web pages web page downloads with correlated loss patterns (fraction spurious):

- $\ast~$ Baseline: 4.8×10^{-5}
- * RTOR: 5.9×10^{-5}
- Implementation has been updated with the latest algorithm changes
- For detailed information and code, see http://riteproject.eu

Questions?