Certificate Status using HBS Compression

Phillip Hallam-Baker Rob Stradling

Problem Statement

- Most common PKI breaches are end entity:
 - Subject breaches ToS
 - Subject discloses key
 - Subject chooses weak key

- Revocation
 - Notify relying parties a certificate isn't trustworthy

Constraints

- 60% of browser use is Open Source
 - Any new browser feature has to be open source compatible.

- Code footprint must be small
- Bandwidth
- Latency
- Third party disclosure

Existing revocation mechanisms

- CRLs
- OCSP (CA)
- OCSP (Stapled)

- Short Lived Certificates
- CRL Sets
 - Just choose the worst of the worst certs

Smaller CRLSets

- SHA-2 hash of revoked cert
 - 256 bits per cert

- Do we really need every bit?
 - Only 1 million certificates (~2^20)
 - 40 bits should be enough to avoid collisions
- Don't need to list revoked certificates
 - Only need to distinguish good certs from bad

Can we do better than 40 bits?

Yes – can get down to 4 bits per revoked cert.

- Skipping over the details...
 - Time / complexity tradeoffs
 - Encoding overheads

Compressed CRLs

- List of cert hashes:
 - **00 00 00 22 39 ..**
 - 00 00 00 4A 20 ..
 - -00 00 00 66 9F .. <REVOKED>
 - -00 00 00 76 84 ..

EVERY cert with hash 00 00 00 6* is revoked

Why is TRANS relevant?

- PKIX CRL
 - CA lists bad certs

- TRANS
 - CA registers certs at issue time

- HBS Compressed status sets
 - Do PKIX CRL + TRANS

Practical data sizes

For 2.5 million certs issued, 10% revoked

- Single CRL for all issued certs is 170KB
- Daily Delta CRL is 2-4KB

These will increase as number of certs issued increases.

Deployment models

- CA Issued
 - Compressed CRLs just a replacement for CRLs

- Single Issuer (e.g. browser provider)
 - Simplifies browser implementation
 - Relies on CAs providing up to date data
 - Probably needs to be based on TRANS

Questions?