
The Token Binding Protocol

V. Anupam, Google Inc.
A. Popov, Microsoft Corp.

The Problem: Bearer Tokens

● Web services generate various security tokens (HTTP cookies, OAuth
tokens) for web applications to access protected resources.

● Currently these are bearer tokens, i.e. any party in possession of such
token gains access to the protected resource.

● Attackers export bearer tokens from the user’s machine, present them to
web services, and impersonate authenticated users.

● The Token Binding protocol can be used to create long-lived TLS bindings
spanning multiple TLS sessions and connections.

● Applications are then enabled to cryptographically bind security tokens to
the TLS layer, preventing token export and replay attacks.

Establishing a Token Binding
● The user agent generates a private-public key pair (possibly within a secure

hardware module, such as TPM). Different keys SHOULD be used by the client for
connections to different servers, according to the token scoping rules of the
application protocol.

● The user agent proves possession of the private key on every TLS connection to the
target server.

● The proof of possession involves signing the tls_unique value [RFC5929] for the
TLS connection with the private key.

● TLS Token Binding is identified by the corresponding public key.

● TLS Token Bindings are long-lived, i.e. they encompass multiple TLS connections
and TLS sessions between a given client and server.

Preventing Token Theft

● When issuing a security token to a client that supports TLS Token Binding,
a server includes the client's TLS Token Binding ID in the token.

● Later on, when a client presents a security token containing a TLS Token
Binding ID, the server makes sure the ID in the token matches the ID of the
TLS Token Binding established with the client.

● In the case of a mismatch, the server discards the token.

● In order to successfully export and replay a bound security token, the
attacker needs to also be able to export the client's private key, which is
hard to do in the case of a key generated in a secure hardware module.

Negotiating the Token Binding Protocol
● The client and server use ALPN protocol IDs [RFC7301] to negotiate the use of the

Token Binding protocol, in addition to the actual application protocol.

● ALPN IDs are also used to negotiate the parameters (signature algorithm, length) of
the Token Binding key.

● This negotiation does not require TLS protocol changes or additional round-trips.

ALPN ID Protocol

h2_tb_p256 HTTP/2 with Token Binding using ECDSA key and NIST P256 curve

h2_tb_rsa2048 HTTP/2 with Token Binding using 2048-bit RSA key

http/1.1_tb_p256 HTTP/1.1 with Token Binding using ECDSA key and NIST P256 curve

http/1.1_tb_rsa2048 HTTP/1.1 with Token Binding using 2048-bit RSA key

The Token Binding Protocol
● The Token Binding protocol consists of one message sent by the client to the server, proving

possession of one or more client-generated asymmetric keys.

● This message is only sent if the client and server agree on the use of the Token Binding protocol
and the key parameters.

● The Token Binding message is sent with the application protocol data in TLS application_data
records.

● A server receiving the Token Binding message verifies that the key parameters in the message
match the Token Binding parameters negotiated via ALPN, and then validates the signatures
contained in the Token Binding message. If either of these checks fails, the server terminates
the connection.

● When a server receives a bound token, the server compares the TLS Token Binding ID in the
security token with the TLS Token Binding ID established with the client. If the bound token
came from a TLS connection without a Token Binding, or if the IDs don't match, the token is
discarded.

Token Binding Protocol Message Format
struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
} Extension;

struct {
 TokenBindingID tokenbindingid;
 opaque signature<0..2^16-1>; // Signature over hashed ("token binding", tls_unique)
 Extension extensions<0..2^16-1>;
} TokenBinding;

struct {
 TokenBinding tokenbindings<0..2^16-1>;
} TokenBindingMessage;

Token Binding ID Format
enum {
 provided_token_binding(0), referred_token_binding(1), (255)
} TokenBindingType;
struct {
 TokenBindingType tokenbinding_type;
 SignatureAndHashAlgorithm algorithm;
 select (algorithm.signature) {
 case rsa: RSAPublicKey rsapubkey;
 case ecdsa: ECDSAParams ecdsaparams;
 }
} TokenBindingID;

● provided_token_binding is used to establish a Token Binding when connecting to a server.
● referred_token_binding is used when requesting tokens to be presented to a different server.

Token Binding Header

TLS
GET / HTTP/1.1
Host: example.com
Token-Binding: DLF02LDSK3DMS28SA…
User-Agent: …
...

ALPN: http/1.1_tb_p256

Client example.com

Token Binding Header

Client example.comTLS
GET / HTTP/1.1
Host: example.com
Token-Binding: DLF02LDSK3DMS28SA…
User-Agent: …
...

ALPN: http/1.1_tb_p256

provided_token_binding: {
 signature(tls_unique),
 public_keyexample.com
}

First-Party Binding

TLS

POST /Login HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
…
username=bob&pw=password

ALPN: http/1.1_tb_p256

Client example.com

200 OK
Set-Cookie: SID=sdkhfoeirusakjnf34aslkd
…
<html>Welcome!</html>

First-Party Binding

TLS

POST /Login HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
…
username=bob&pw=password

ALPN: http/1.1_tb_p256

Client example.com

200 OK
Set-Cookie: SID=sdkhfoeirusakjnf34aslkd
…
<html>Welcome!</html>

{
 user_id: 1234456,
 last_login: 9348230984,
 tb_id: public_keyexample.com
 …
}

First-Party Binding

TLS

GET /Inbox.html HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
Cookie: SID=sdkhfoeirusakjnf34aslkd
…

ALPN: http/1.1_tb_p256

Client example.com

First-Party Binding

TLS

GET /Inbox.html HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
Cookie: SID=sdkhfoeirusakjnf34aslkd
…

ALPN: http/1.1_tb_p256

Client example.com
provided_token_binding: {
 signature(tls_unique),
 public_keyexample.com
}

{
 user_id: 1234456,
 last_login: 9348230984,
 tb_id: public_keyexample.com
 …
}

First-Party Binding

TLS

GET /Inbox.html HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
Cookie: SID=sdkhfoeirusakjnf34aslkd
…

ALPN: http/1.1_tb_p256

Client example.com
provided_token_binding: {
 signature(tls_unique),
 public_keyexample.com
}

{
 user_id: 1234456,
 last_login: 9348230984,
 tb_id: public_keyexample.com
 …
}

First-Party Binding

TLS

GET /Inbox.html HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
Cookie: SID=sdkhfoeirusakjnf34aslkd
…

ALPN: http/1.1_tb_p256

Client example.com

200 OK
…
<html>Your inbox:...</html>

Why Federation Support?

● In Federated Sign-On Protocols (e.g., OpenId Connect)
○ Client gets identity token from Identity Provider and
○ Presents it to Relying Party

● Client uses different Token Binding Keys for IdP & RP
○ RP is typically in different domain than IdP

● Identity token from IdP is bound to client key for IdP
● Token will not pass validation by RP

● Need to enable IdP to issue token bound to RP

Triggering Referred Binding: HTTP Redirects

Client

rp.comTLS
GET / HTTP/1.1
Token-Binding: QWR26DLF02LDSK3DM…

idp.comTLS

302 Moved Temporarily
Location: https://idp.com/rp-login
Include-Referer-Token-Binding-Id: true

ALPN: http/1.1_tb_p256

Triggering Referred Binding: HTTP Redirects

Client

rp.comTLS
GET / HTTP/1.1
Token-Binding: QWR26DLF02LDSK3DM…

idp.comTLS
GET /rp-login HTTP/1.1
Host: idp.com
Token-Binding: MDLF02LDSK3DMS28S…
User-Agent: …

302 Moved Temporarily
Location: https://idp.com/rp-login
Include-Referer-Token-Binding-Id: true

ALPN: http/1.1_tb_p256

Triggering Referred Binding: HTTP Redirects

Client

rp.comTLS
GET / HTTP/1.1
Token-Binding: QWR26DLF02LDSK3DM…

idp.comTLS
GET /rp-login HTTP/1.1
Host: idp.com
Token-Binding: MDLF02LDSK3DMS28S…
User-Agent: …

302 Moved Temporarily
Location: https://idp.com/
Include-Referer-Token-Binding-Id: true

provided_token_binding: {
 signature(tls_unique),
 public_keyidp.com
}

referred_token_binding: {
 signature(tls_unique),
 public_keyrp.com
}

ALPN: http/1.1_tb_p256

Federated Binding

TLS
GET /rp-login HTTP/1.1
Token-Binding: DLF02LDSK3DMS28SA…
Cookie: SID=sdkhfoeirusakjnf34aslkd
…

ALPN: http/1.1_tb_p256

Client idp.com

302 Moved Temporarily
Location: https://rp.com/login?tok=hfoeimk...
…

{
 user_id: 1234456,
 name: Bob,
 tb_id: public_keyrp.com
 …
}

Federated Binding

TLS

GET /login?tok=hfoeimkp... HTTP/1.1
Token-Binding: QWR26DLF02LDSK3DM…
…

ALPN: http/1.1_tb_p256

Client rp.com

200 OK
…
<html>Welcome!</html>

provided_token_binding: {
 signature(tls_unique),
 public_keyrp.com
}

{
 user_id: 1234456,
 name: Bob,
 tb_id: public_keyrp.com
 …
}

Triggering Referred Binding: XHR

● RP uses new property of XmlHttpRequest to make
client ask IdP for RP-bound token

var xhr = new XmlHttpRequest();
xhr.withCredentials = true; // send cookies
xhr.withRefererTokenBindingId = true;
xhr.open(method, url, async);

● If property is true, Client includes
referred_token_binding
in Token-Binding header to IdP

Privacy Considerations

Clients must
● Use different Token Binding Ids for different eTLDs

○ Protects against cross-domain linking of user identities

● Let users manage TB Ids like cookies
○ They are persistent identifiers that are automatically presented by

clients to identify themselves to servers
○ TB Ids must obey all user-specified cookie control settings
○ TB Ids can be cleared by user at any time

● Never transmit Token Binding Ids in cleartext

Security Considerations

Clients must
● Negotiate Enhanced Master Secret Extension

○ Protocol uses tls_unique to create Token Binding Ids
○ EMS Extension protects against Triple Handshake Attack which

allows propagation of tls_unique value into other TLS connections
& thus could allow bound tokens to be used over such connections

● Protect Token Binding private keys
○ Bound tokens cannot be used by clients without right private keys
○ Ideally, clients should use hardware security modules to prevent

extraction of private keys

Links And Contact Information

● The Token Binding Protocol Version 1.0: http://tools.ietf.
org/html/draft-popov-token-binding-00

● Token Binding over HTTP:http://tools.ietf.org/html/draft-
balfanz-https-token-binding-00

● Dirk Balfanz balfanz@google.com
● Vinod Anupam vanupam@google.com
● Andrei Popov andreipo@microsoft.com

http://tools.ietf.org/html/draft-popov-token-binding-00
http://tools.ietf.org/html/draft-popov-token-binding-00
http://tools.ietf.org/html/draft-popov-token-binding-00
http://tools.ietf.org/html/draft-balfanz-https-token-binding-00
http://tools.ietf.org/html/draft-balfanz-https-token-binding-00
http://tools.ietf.org/html/draft-balfanz-https-token-binding-00
mailto:balfanz@google.com
mailto:vanupam@google.com
mailto:andreipo@microsoft.com

