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Algebraic Eraser

I I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux, Key
agreement, the Algebraic EraserTM, and lightweight
cryptography, Algebraic methods in cryptography, Contemp.
Math., vol. 418, Amer. Math. Soc., Providence, RI, 2006,
pp. 1–34.

I Asymmetric key agreement protocol

I Designed for low-cost platforms with constrained
computational resources

I RFID
I Bluetooth
I NFC
I “Internet of Things”

I Complexity scales linearly with desired security level, unlike
RSA, ECC.



AE Performance vs ECC

2128 Security level (AES–128)

ECC 283 AE B16, F256 Gain
Cycles Gates Wtd. Perf. Cycles Gates Wtd. Perf.

164,823 29,458 4,855,355,934 71.7x
85,367 77,858 6,646,503,866 3,352 20,206 67,730,512 98.1x
70,469 195,382 13,768,374,158 203.3x

Wtd. Perf. is Weighted Performance (clock cycles × gate count) and

represents time and power usage. Gate counts are for 65nm CMOS. ECC data

taken from A Flexible Soft IP Core for Standard Implementations of Elliptic

Curve Cryptography in Hardware, B. Ferreira and N. Calazans, 2013 IEEE 20th

International Conference on Electronics, Circuits, and Systems (ICECS),

12/2013.



Overview of AE

I The AE key exchange is a nonabelian Diffie–Hellman
exchange.

I The underlying algebraic structure is not (Z/NZ)× or E (Fq),
but rather

I Mn(Fq) (n × n matrices over Fq),
I Bn (the braid group on n strands).

I Private keys: a pair R = (m, µ) of a matrix and braid.

I Public keys: a pair P = (M, σ) of a matrix and a permutation
in Sn.

I Each user also knows a fixed ordered list of elements of Fq

(T-values).

I The shared secret: same kind of pair as the public key.



Overview of AE

I The security level depends on n, q and the lengths of the
private braids (and scales linearly with the lengths of the
braids).

I The (maximum) security level for AE is n · lg q, not (lg q)/2
as in ECC. In particular one can use moderately sized finite
fields, not multiprecision finite fields.

I The hard computational problem underlying AE takes place in
the braid group Bn, and is known as the Simultaneous
conjugacy separation search problem. This is not the same
computational problem underlying earlier braid group
schemes, and AE is not “Braid Group Cryptography.”



Braids
A braid on n strands is a collection of n entangled strings.

We can represent a braid by a left-right crossing sequence of
signed nonzero integers i1i2 · · · ik , (“Artin generators”) each of
which lies between −n and n.

I A positive integer i means “cross the ith strand under the
(i + 1)st strand.”

I A negative integer −i means “cross the ith strand over the
(i + 1)st strand.”

1 2 3 1 2 1 3 − 3 − 2 − 2 1 − 3 − 1



E -multiplication

E -multiplication is an action of Bn on Mn(Fq)

I Each Artin generator determines an n × n sparse matrix, a
colored Burau matrix.

I This matrix depends on the T -values (the fixed set of
elements in Fq), but the correspondence between generators
and matrices changes as one moves down the braid in the
private key.

I This nontrivial permuting of the T -values is the “eraser” part
of the construction. Effectively it masks the map between
braids and matrices.

I E -multiplication is how the public keys are produced from the
private data: PA = mA ? µA, PB = mB ? µB (A = Alice,
B = Bob).



Shared secret computation

I Bob and Alice take each others public keys
PA = (MA, σA),PB = (MB , σB), and multiply their private
matrices mA,mB against them.

I Then they E -multiply the result by their braids µA, µB :

SA = PBmA ? µA, SB = PAmB ? µB .

I We have SA = SB .

Many details have of course been elided, for example how one
chooses the matrices and braids.
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