ETH zürich

Enabling Internet-Wide Deployment of Explicit Congestion Notification

Brian Trammell, Mirja Kühlewind, Damiano Boppart, lain Learmonth, Gorry Fairhurst, and Richard Scheffenegger

Internet Congestion Control Research Group Dallas, Texas, IETF 92, 23 March 2015

1

The Problem

- Explicit Congestion Notification (ECN) defined in RFC 3168
 - 15 years ago!
- Idea: routers mark packets to signal congestion
- Deployment largely failed
 - Rebooting routers, broken middleboxes, overprovisioning
- ECN is relevant again
 - Changing network environment, changing requirements for ECN (e.g. DCTCP).

In the meantime...

- ECN negotiation (for TCP) uses additional flags in the handshake
 - SYN ECE CWR
 - SYN ACK ECE
 - ACK
- Linux defaults to passive ECN negotiation (i.e., server will negotiate ECN if asked)
 - increasing server deployment
 - but no client usage (PAM 2013)
- Question: can we leverage client side defaults to drive deployment of ECN?

ļ

Connectivity risk of client-side ECN default

- Methodology: run n trials from m vantage points, comparing connectivity with ECN negotiation enabled to that with ECN negotiation disabled, using the Linux tcp_ecn sysctl.
 - Always succeeds, regardless of ECN → OK
 - Always fails, regardless of ECN
 → simply broken
 - Always succeeds without ECN, always fails with ECN
 - → ECN-dependent connectivity
 - ECN dependent connectivity from only some vantage points
 - → path-dependent ECN-dependent connectivity
- Target the top million Alexa webservers from three vantage points from <u>digitalocean.com</u>

Endpoint-dependent connectivity dependency

- If the box breaking ECN is close to the server, fallback as in RFC 3168 can save us:
 - retransmitted SYN ECE CWR is SYN only, no ECN.
- ~0.4% of the paths, risk of increased connection latency.
 - much less than ~0.4% of the traffic
- Probably a firewall → content provider or CDN can fix this problem with relatively little effort in an ECN-by-default world.

Path-dependent connectivity dependency

- This is worse news: ECN breaks on the path outside the content provider's network.
 - Content provider can't easily fix the problem
 - Rerouting might cause ECN to break mid-flow
- Definitely seen about on about 2.5 per 100'000 hosts...
 - ...and a third of these are GoDaddy parking sites
 - ...we tried to use traceroute to find the rest, but it lied to us

Connectivity Dependency Results

Table 1. Connectivity statistics, of 581,737 IPv4 hosts and 17,029 IPv6 hosts, all vantage points, 27 Aug - 9 Sep 2014

IPv4		IPv6						
hosts	pct	hosts	pct	description				
553805	95.20%	14889	87.43%	Always connected from all vantage points				
3998	0.69%	1594	9.36%	Never connected from any vantage point				
8631	631 1.48% $138 0.81%$		0.81%	Single transient connection failure				
11999	2.06%	06% 324 1.90%		Non-ECN-related transient connectivity				
578433	99.43%	16945	99.50%	Total ECN-independent connectivity				
2193	0.38%	13	0.08%	Stable ECN dependency near host				
15	0.00%	0	0.00%	Stable ECN dependency on path				
34	0.01%	3	0.02%	Potential ECN dependency on path				
201	0.03%	0	0.00%	Temporal ECN dependency				
2443	0.42%	16	0.09%	Total apparent ECN-dependent connectivity				
862	0.15%	69	0.41%	Inconclusive transient connectivity				

| '

Connectivity Depends on OS and Rank

Fig. 1. TTL spectrum of ECN-dependent and -independent connectivity cases

Fig. 2. Proportion of sites failing to connect when ECN negotiation is requested

| 8

ECN Negotiation Results

Table 2. ECN negotiation statistics, of 581,711 IPv4 hosts and 17,028 IPv6 hosts, all vantage points, 27 Aug - 9 Sep 2014, compared to previous measurements.

IPv4		IPv6		2011	2012			
hosts pct		hosts pct		pct[5]	pct[2]	Description		
	$\overline{326743}$	56.17%	11138	65.41%	11.2%	29.48%	Capable of negotiating ECN	
	324607	55.80%	11121	65.31%	_	_	and always negotiate	
	2136	0.37%	17	0.11%	_	_	sometimes negotiate, of which	
	107	0.02%	1	0.01%	_	_	negotiation depends on path	
	27	0.02%	0	0.00%	_	_	sometimes reflect SYN ACK flags	
	248791	43.23%	3961	26.23%	82.8%	70.52%	Not capable of negotiating ECN	
	2013	0.35%	83	0.48%	_	_	and reflect SYN ACK flags	
	6177	1.06%	1929	11.33%	_	_	Never connect with ECN (see §3.1)	

The trend of increasing willingness to negotiate ECN continues...

| 9

ECN signaling results

Table 3. Relationship between ECN IP and TCP flags (expected cases in italics)

	IPv4	4 (N=58	31711)	IPv6 (N=17028)		
Marking	ECN	Reflect	No ECN	ECN	Reflect	No ECN
only $ECT(0)$	315605	693	1995	8998	1	46
ECT(0) + ECT(1)	0	0	0	4	1	7
ECT(0) on SYN ACK	7780	0	46	89	0	82
only $ECT(1)$	3	1	17	0	10	12
ECT(1) on SYN ACK	4	0	16	7	0	31
only CE	11	1	7	0	0	48
CE + ECT	5	2	0	23	66	39
CE on SYN ACK	11	0	5	22	0	87
none	6939	1343	243150	2013	5	3694

...but signaling is less reliable, and the situation is worse on IPv6 than IPv4.

(And of ~5 million flows, we saw only two legitimate CE markings.)

l 10

Conclusions and future work

- Can we safely leverage client-side defaults to drive ECN deployment?
 - Yes.
- What is the risk to connectivity (to popular websited) of doing so?
 - < O(10⁻⁴) on a path basis when fallback as in RFC 3168* is used.
 - « O(10⁻⁴) weighted by traffic volume (how much less depends on the model)
- Once ECN is negotiated, signaling anomalies in ~2% of cases may interfere.
 - the next step to making the world safe for ECN is defining methods for detecting and reacting to signaling failures in the transport stack.
- What we're doing next:
 - defining these signaling fallback methods (IETF)
 - measuring the situation for non-web services and access networks
 - making continuous measurement available at http://ecn.ethz.ch