
IPPM Considerations for the
IPv6 PDM Destination Option

Nalini Elkins – Inside Products, Inc.

Mike Ackermann – BCBS Michigan

Rob Hamilton – Chemical Abstracts

Questions from IETF91

1. Does PDM have enough variables to actually diagnose
problems?

2. Are all PDM fields necessary?

3. Why is the proposal for an IPv6 extension header rather
than a TCP option? Only TCP is important.

4. Does PDM create too much overhead?

5. Will PDM work for complex apps not just simple
applications with one send and one receive?

Enough Variables?

• Question:

– Does PDM have enough variables to actually
diagnose problems?

• Answer:

– PDM works WITH other fields in headers

– PDM ADDs data which is not easy to get

– Technician will be looking at tool such as
Wireshark (or add-on)

Too Many Fields?

• Question:

– Are all PDM fields necessary?

• Answer:

– Yes.

– (Explained in answer to next question)

Why IPv6 Extension Header?

• Question:
– Why is the proposal for an IPv6 extension header rather than a

TCP option? Only TCP is important.

• Answer:
– Large enterprises have traffic which is non-TCP which will benefit

from PDM.

– Non-TCP traffic includes:
• IBM's Enterprise Extender, which allows its SNA Peer-to-Peer Networking

(APPN) traffic flow over UDP links

• Some WWW traffic flows as UDP packets

• TFTP, SNMP, DNS, OSPF, etc.

• Other/new upper layer protocols (e.g. the new Frame Control Protocol)

– TCP applications will also benefit from PDM.

From Boeing

• Aircraft have many links with
varying cost, performance,
availability profiles.

• Not all links available during
all phases of flight.

• Not all links encode geo
information at the link--‐layer

• Wide variety of applications –
not all of which are geo--
‐aware

• IPv6 layer is only
commonality

From IETF 91: IPv6GEO – GEO Information in IPv6 Packet Headers
http://www.ietf.org/proceedings/91/slides/slides-91-6man-8.pdf

Too Much Overhead?
• Total PDM size is only 16 bytes. 16 (optional) bytes should NOT be

an issue on today’s high speed networks.

Potential overhead

(additional time to deliver the response to the end user)

Packet

Bytes RTT Bytes Bytes New Overhead

in Packet Per Milli in PDM RTT

===

1000 1000 milli 1 16 1016.000 16.000 milli

1000 100 milli 10 16 101.600 1.600 milli

1000 10 milli 100 16 10.160 .160 milli

1000 1 milli 1000 16 1.016 .016 milli

Actual RTTs
Packets going to multiple business partners

Packet

Bytes RTT Bytes Bytes New Overhead

in Packet Per Milli in PDM RTT

===

1000 17 milli 58 16 17.360 .360 milli

Packets within a data center

(Notice that the scale is now in microseconds not milliseconds)

Packet

Bytes RTT Bytes Bytes New Overhead

in Packet Per Micro in PDM RTT

===

1000 20 micro 50 16 20.320 320 micro

Note: Both examples are for large enterprises

Only for Simple Apps?

• Question

– Will PDM work for complex apps not just
simple applications with one send and one
receive.

• Answer

– Not at all.

– Examples follow.

One-Way Flow
Packet Sender PSN PSN Delta Delta

This Packet Last Recvd Last Recvd Last Sent

===

1 Server 1 0 0 0

2 Server 2 0 0 5

3 Server 3 0 0 12

4 Server 4 0 0 20

In a one-way flow, only the Delta Last Sent will
be seen as used. Recall, Delta Last Sent is
the difference between the send of one
packet from a device and the next. This is a
measure of throughput for the sender -
according to the sender's point of view. That
is, it is a measure of how fast is the application
itself (with stack time included) able to send
packets.

How might this be useful? If one is having a
performance issue at the client and sees that
packet 2, for example, is sent after 5
microseconds from the server but takes much
longer to arrive at the destination (deduced
from other fields in the packet) then one may
safely conclude that there are delays in
the path other than at the server which may be
causing the delivery issue of that packet.
Such delays may include the network links,
middle-boxes, etc.

Multiple Send Flow

Assume that two packets are sent with each send from the server.

Packet Sender PSN PSN Delta Delta

This Packet Last Recvd Last Recvd Last Sent

==

1 Server 1 0 0 0

2 Server 2 0 0 5

3 Client 1 1 20 0

4 Server 3 1 10 15

Notice that in packet 3, the client has a value
of Delta Last Received of 20. Recall that
Delta Last Received is the Send time of
packet 3 - receive time of packet 2. So, what
does one know now? In this case, Delta Last
Received is the processing time for the
Client to send the next packet.

How to interpret depends on what
is actually being sent. Remember,
PDM is not being used in isolation,
but to supplement the fields found
in other headers.

Examples

• Client is sending a standalone TCP ACK. One would find this by looking
at the payload length in the IPv6 header and the TCP Acknowledgement
field in the TCP header. So, in this case, the client is taking 20 units to
send back the ACK. This may or may not be interesting.

• Client is sending data with the packet. Again, one would find this by
looking at the payload length in the IPv6 header and the TCP
Acknowledgement field in the TCP header. So, in this case, the client is
taking 20 units to send back data. This may represent "User Think
Time". Again, this may or may not be interesting, in isolation. But, if
there is a performance problem receiving data at the server, then taken
in conjunction with RTT or other packet timing information, this
information may be quite interesting.

Benefit of PDM

• Of course, one also needs to look at the PSN
Last Received field to make sure of the
interpretation of this data. That is, to make
sure that the Delta Last Received corresponds
to the packet of interest.

• The benefits of PDM are that we have such
information available in a uniform manner for all
applications and all protocols without extensive
changes required to applications.

Multiple Send with Errors

• Are the functions of PDM better suited to TCP or a TCP option? Let us
take the case of how PDM may help in a case of TCP retransmissions in
a way that TCP options or TCP ACK / SEQ would not.

• Assume that three packets are sent with each send from the server.

• From the server, this is what is seen:

Pkt Sender PSN PSN Delta Delta TCP Data

This Pkt LastRecvd LastRecvd LastSent SEQ Bytes

===

1 Server 1 0 0 0 123 100

2 Server 2 0 0 5 223 100

3 Server 3 0 0 5 333 100

At Client

• The client however, does not get all the packets. From the client, this is
what is seen for the packets sent from the server.

Pkt Sender PSN PSN Delta Delta TCP Data

This Pkt LastRecvd LastRecvd LastSent SEQ Bytes

===

1 Server 1 0 0 0 123 100

2 Server 3 0 0 5 333 100

• Notice that the packet with PSN = 2 from the server is not received

Server Retransmits

• Let's assume that the server now retransmits the packet. (Obviously, a
duplicate acknowledgment sequence for fast retransmit or a retransmit
timeout would occur. To illustrate the point, these packets are being left
out.)

• So, then if a TCP retransmission is done, then from the client, this is what
is seen for the packets sent from the server.

Pkt Sender PSN PSN Delta Delta TCP Data

This Pkt LastRecvd LastRecvd LastSent SEQ Bytes

===

1 Server 4 0 0 30 223 100

• The server has resent the old packet 2 with TCP sequence number of 223. The
retransmitted packet now has a PSN This Packet value of 4.

• The Delta Last Sent is 30. That is the time between sending the packet with PSN of 3 and
this current packet.

Server Retransmits AGAIN
• Let's say that packet 4 STILL does not make it. Then, after some

amount of time (RTO) then the packet with TCP sequence number of 223
is resent.

• From the client, this is what is seen for the packets sent from the server.

Pkt Sender PSN PSN Delta Delta TCP Data

This Pkt LastRecvd LastRecvd LastSent SEQ Bytes

===

1 Server 5 0 0 60 223 100

TCP SEQ Unhelpful

• If now, this packet makes it, one has a very good idea that packets
exist which are being sent from the server as retransmissions and
not making it to the client. This is because the PSN of the resent
packet from the server is 5 rather than 4. If we had used TCP
sequence number alone, we would never have seen this situation.
Because the TCP sequence number in all situations is 223.

• This situation would be experienced by the user of the application
(the human being actually sitting somewhere) as a "hangs" or long
delay between packets. On large networks, to diagnose problems
such as these where packets are lost somewhere on the network,
one has to take multiple traces to find out exactly where.

Only Client Trace Needed

• The first thing is to start with doing a trace at the client
and the server. So, we can see if the server sent a
particular packet and the client received it. If the client
did not receive it, then we start tracking back to trace
points at the router right after the server and the router
right before the client. Did they get these packets which
the server has sent? This is a time consuming activity.

• With PDM, we can speed up the diagnostic time
because we may be able to use only the trace taken at
the client to see what the server is sending.

Appendix

• Presentation from IETF 91

• Explanation of PDM

Requirement

• In basic IP
transport

• Undisturbed
by middle
systems

Solution

•Implementation of
existing extension
header: Destination
Options Header
(DOH)
•Performance and
Diagnostic Metrics
(PDM) DOH

We propose:

PDM

• Performance and Diagnostic Metrics Destination
Option (PDM) contains the following fields: (by
5-tuple)

• PSNTP : Packet Sequence Number This Packet

• PSNLR : Packet Sequence Number Last Received

• DELTALR : Delta Last Received

• DELTALS : Delta Last Sent

• TIMEBASE : Base timer unit

• SCALEDL : Scale for Delta Last Received

• SCALEDS : Scale for Delta Last Sent

PDM Timing

• No time synchronization needed

• All times are in relation to self

Start Flow

• Packet 1 is sent from Host A to Host B.
The time for Host A is 10:00AM.

• The time and packet sequence number
are saved by Host A internally. The
packet sequence number and delta times
are sent in the packet.

Packet 1
Packet 1

PDM Contents:

PSNTP : Packet Sequence Number This Packet: 25

PSNLR : Packet Sequence Number Last Received: -

DELTALR : Delta Last Received: -

DELTALS : Delta Last Sent: -

Host A Host B

Keep in Host A

• Internally, within the sender, Host A, it must
keep:

• Packet Seq. Number of last packet sent: 25

• Time the last packet was sent: 10:00:00

Keep in Host B

• Packet 1 is received at Host B. Its time is set to
one hour later than Host A. In this case, 11:00AM

• Internally, within the receiver, Host B, it must note:

• Packet Seq. Number of last packet received: 25

• Time the last packet was received : 11:00:03

Server Delay

• Host B processes packet 1 and creates a
response (packet 2).

• Packet 2 is sent by Host B to Host A.

• This is the time taken by Host B or Server Delay

• Server Delay = Sending time (packet 2) - receive
time (packet 1)

DeltaLR

• We will call the result of this calculation: Delta
Last Received

• DELTALR = Sending time (packet 2) - receive
time (packet 1)

• Note, both sending time and receive time are
saved internally in Host B. They do not travel in
the packet. Only the Delta is in the packet.

Host B Stats

• Within Host B is the following:

• Packet Sequence Number of the last packet received: 25

• Time the last packet was received: 11:00:03

• Packet Sequence Number of this packet: 12

• Time this packet is being sent: 11:00:07

• DELTALR = 4 seconds (11:00:07 - 11:00:03)

• DELTALR is Server Delay.

Packet 2

Packet 2

PDM Contents:

PSNTP : Packet Sequence Number This Packet: 12

PSNLR : Packet Sequence Number Last Received: 25

DELTALR : Delta Last Received: 4 seconds

DELTALS : Delta Last Sent: -

Host A
Host B

Metrics Needed

• The metrics left to be calculated are end-
to-end time and round-trip delay (network
time).

• This will be calculated by Host A when it
receives Packet 2.

Packet 2 Received

• Packet 2 is received at Host A. Remember, its time is set to
one hour earlier than Host B. Internally, it must note:

• Packet Sequence Number of the last packet received: 12

• Time the last packet was received : 10:00:12

• Note, this timestamp is in Host A time. It has nothing
whatsoever to do with Host B time.

End-to-End Time

• Now, Host A can calculate total end-to-end time.

• End-to-End Time = Time Last Received - Time
Last Sent

• Packet 1 was sent by Host A at 10:00:00. Packet
2 was received by Host A at 10:00:12

• End-to-End time = 10:00:12 - 10:00:00 or 12

• This metric we will call DELTALS or Delta Last
Sent

Network TIme

• We can now also calculate round trip delay
(network time). The formula is:

• Round trip delay = DELTALS - DELTALR

• Or: End-to-end time – Server Delay

• Round trip delay = 12 - 4 or 8

How to Communicate?

• Now, the only problem is that at this point all
metrics are in Host A only and not exposed
in a packet.

• To do that, we need a third packet.

Packet 3

Packet 3

PDM Contents:

PSNTP : Packet Sequence Number This Packet: 26

PSNLR : Packet Sequence Number Last Received: 12

DELTALR : Delta Last Received: 0

DELTALS : Delta Last Sent: 12 seconds

Host A Host B

Breakout in
WireShark

Timebase

• Possible values of Time Base:

• 00 - milliseconds

• 01 - microseconds

• 10 - nanoseconds

• 11 - picoseconds

Scale (DLR / DLS)

• 7-bit signed integer.

• Possible values from -64 to +63.

• Store most significant bits of timer
value along with a scaling factor to
indicate the magnitude.

• High-order 16 bits.

