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Warning: some of what follows is 
incomplete or inadequate.  You 

must read the draft to get all the 
details.
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Unicode has lots of 
abstract characters.

3



You can (sometimes) encode 
the same abstract character 

in more than one way.
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Some things that look the 
same are not in fact the 

same abstract character.
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When you have an identifier, 
you need exactly one way to 
encode it, or it won’t match.

6



“Inclusion mechanism” of i3 
(inclusion-based identifier 

internationalization) tries to make 
this mostly work.
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Inclusion

1. Start with an empty list 
2. Look at character properties 
3. If they’re good for identifiers (in the IETF 

sense), they’re in 
4. Otherwise, they remain out
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Code points have properties, which allow 
you to make decisions about them.  One 

of those is whether the code point (or 
sequence) is in Normalization Form C.
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Normalization forms are designed to make 
two ways of encoding the same abstract 

character “be the same” for some meaning 
of “same” (i.e. compatibly or canonically).
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Normalization does not make 
characters that look the same be 

the same: 
A (U+0041) ≠ А (U+0410)

11



Homoglyphs can sometimes 
be distinguished other ways 

(e.g. script property).
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Operational conventions 
can help (especially 

registration conventions).

13



So what’s the problem?

This is what caused the realization:
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So what’s the problem?

• Turns out there’s a lot of that: 

•  (ARABIC LETTER HAH WITH HAMZA ABOVE) ځ

•  (ARABIC LETTER ALEF WITH HAMZA ABOVE) أ

• ৡ (BENGALI LETTER VOCALIC LL)
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So what is the problem?

Some cases (usually) don’t look perfectly the same: 

• ƚ (U+019A) vs. l ̵ (\u’006C’\u’0335’) 

• ø (U+00F8) vs. o ̷(\u’006F’\u’0037’) 

• If I type ø in bold, it doesn’t seem better.  “Now 
you have two problems.”
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But the problem?

What about digraphs? 

• ʦ (U+02A6) vs ts (\u’0074’\u’0073’) 

• ǉ (U+01C9) vs lj (\u’006C’\u’006A’) 

Note that the first of these is ok under most forms of 
i3, and the second is DISALLOWED.
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So, just combining marks?  
No!

• க (U+0B95, Ka) vs ௧ (U+0BE7, digit 1) 

• ٣ (U+0663, digit 3) vs. ۳ (U+06F3, digit 3) 

• ⼝口 (U+53E3, “mouth, gate”) vs. ⼞囗 (U+56D7,    
“proud, upright)
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This is not just confusability, 
homoglyphs, and so on.  No 

tech fix for human perception.
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For Unicode, if two code points or 
code point sequences do not 

normalize to one another, then they’re 
not the same abstract character.
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Making different characters 
match

• Canonical normalization 

• For sure really the same abstract character 

• Compatibility normalization 

• Improve matching of related but maybe different 
abstract characters 

• Mapping 

• Thumb-on-scale forcing to make things match
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Directions
This is only allowed if we think we ought to solve stuff! 

1. Find them, disallow new, cope with old 

2. Disallow some combining sequences 

3. Do nothing/just warn 

4. Get a (or >1?) new Unicode property 

5. Create NFI
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