
LUCID problem
IETF 92 — Dallas, TX

March 2015
Asmus Freytag & Andrew Sullivan

1

Warning: some of what follows is
incomplete or inadequate. You

must read the draft to get all the
details.

2
Image by Tewy (Own work) [GFDL (http://www.gnu.org/copyleft/
fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/

by-sa/3.0/)], via Wikimedia Commons

Unicode has lots of
abstract characters.

3

You can (sometimes) encode
the same abstract character

in more than one way.

4

Some things that look the
same are not in fact the

same abstract character.

5

When you have an identifier,
you need exactly one way to
encode it, or it won’t match.

6

“Inclusion mechanism” of i3
(inclusion-based identifier

internationalization) tries to make
this mostly work.

7

Inclusion

1. Start with an empty list
2. Look at character properties
3. If they’re good for identifiers (in the IETF

sense), they’re in
4. Otherwise, they remain out

8

Code points have properties, which allow
you to make decisions about them. One

of those is whether the code point (or
sequence) is in Normalization Form C.

9

Normalization forms are designed to make
two ways of encoding the same abstract

character “be the same” for some meaning
of “same” (i.e. compatibly or canonically).

10

Normalization does not make
characters that look the same be

the same:
A (U+0041) ≠ А (U+0410)

11

Homoglyphs can sometimes
be distinguished other ways

(e.g. script property).

12

Operational conventions
can help (especially

registration conventions).

13

So what’s the problem?

This is what caused the realization:

14

So what’s the problem?

• Turns out there’s a lot of that:

• (ARABIC LETTER HAH WITH HAMZA ABOVE) ځ

• (ARABIC LETTER ALEF WITH HAMZA ABOVE) أ

• ৡ (BENGALI LETTER VOCALIC LL)

15

So what is the problem?

Some cases (usually) don’t look perfectly the same:

• ƚ (U+019A) vs. l ̵ (\u’006C’\u’0335’)

• ø (U+00F8) vs. o ̷(\u’006F’\u’0037’)

• If I type ø in bold, it doesn’t seem better. “Now
you have two problems.”

16

But the problem?

What about digraphs?

• ʦ (U+02A6) vs ts (\u’0074’\u’0073’)

• ǉ (U+01C9) vs lj (\u’006C’\u’006A’)

Note that the first of these is ok under most forms of
i3, and the second is DISALLOWED.

17

So, just combining marks?
No!

• க (U+0B95, Ka) vs ௧ (U+0BE7, digit 1)

• ٣ (U+0663, digit 3) vs. ۳ (U+06F3, digit 3)

• ⼝口 (U+53E3, “mouth, gate”) vs. ⼞囗 (U+56D7,
“proud, upright)

18

This is not just confusability,
homoglyphs, and so on. No

tech fix for human perception.

19

For Unicode, if two code points or
code point sequences do not

normalize to one another, then they’re
not the same abstract character.

20

Making different characters
match

• Canonical normalization

• For sure really the same abstract character

• Compatibility normalization

• Improve matching of related but maybe different
abstract characters

• Mapping

• Thumb-on-scale forcing to make things match

21

Directions
This is only allowed if we think we ought to solve stuff!

1. Find them, disallow new, cope with old

2. Disallow some combining sequences

3. Do nothing/just warn

4. Get a (or >1?) new Unicode property

5. Create NFI

22

