
1

Performance Investigations

Hannes Tschofenig, Manuel Pégourié-Gonnard
25th March 2015

2

Motivation

§  In <draft-ietf-lwig-tls-minimal> we tried to provide guidance for the use
of DTLS (TLS) when used in IoT deployments and included performance
data to help understand the design tradeoffs.

§  Later, work in the IETF DICE was started with the profile draft, which
offers detailed guidance concerning credential types, communication
patterns. It also indicates which extensions to use or not to use.

§ Goal of <draft-ietf-lwig-tls-minimal> is to offer performance data based on
the recommendations in the profile draft.

§ This presentation is about the current status of gathering performance data
for later inclusion into the <draft-ietf-lwig-tls-minimal> document.

3

Performance Data
§ This is the data we want:

§  Flash code size
§  Message size / Communication Overhead
§  CPU performance
§  Energy consumption
§  RAM usage

§ Also allows us to judge the improvements of various extensions and gives
engineers a rough idea what to expect when planning to use DTLS/TLS in
an IoT product.

§  <draft-ietf-lwig-tls-minimal-01> offers preliminary data about
§  Code size of various basic building blocks (data from one stack only)
§  Memory (RAM/flash) (pre-shared secret credential only)
§  Communication overhead (high level only)

4

§ Goal of the authors: Determine performance of asymmetric cryptography
on ARM-based processors.

§ Next slides explains
§  Assumptions for the measurements,
§  ARM processors used for the measurements,
§  Development boards used,
§  Actual performance data, and
§  Comparison with other algorithms.

Overview

5

§ Main focus of the measurements so far was on
§  raw crypto (and not on protocol exchanges)
§  ECC rather than RSA
§  Different ECC curves
§  Run-time performance (not energy consumption, RAM usage, code size)

§ No hardware acceleration was used.
§ Used open source software; code based on PolarSSL/mbed TLS stack.
§ No hardware-based random number generator in the development

platform was used à Not fit for real deployment.

Assumptions

6

ARM Cortex-M Processors

Lowest cost
Low power

Lowest power
Outstanding energy efficiency

Performance efficiency
Feature rich connectivity

Digital Signal Control (DSC)
Processor with DSP
Accelerated SIMD
Floating point (FP)

Processors use the 32-bit RISC architecture
http://www.arm.com/products/processors/cortex-m/index.php

Recently released;
Best performance

Processors used
in the performance
tests

7

Prototyping Boards used in Performance Tests
§  ST Nucleo F401RE (STM32F401RET6)

§  ARM Cortex-M4 CPU with FPU at 84MHz
§  512KB Flash, 96KB SRAM

§  ST Nucleo F103 (STM32F103RBT6)
§  ARM Cortex-M4 CPU with FPU at 72MHz
§  128KB Flash, 20KB SRAM

§  ST Nucleo L152RE (STM32L152RET6)
§  ARM Cortex-M3 CPU at 32MHz
§  512 KBytes Flash, 80KB RAM

§  ST Nucleo F091 (STM32F091RCT6)
§  ARM Cortex-M0 CPU at 48MHz
§  256 KBytes Flash, 32KB RAM

§  NXP LPC1768
§  ARM Cortex-M3 CPU at 96MHz
§  512KB Flash, 32KB RAM

§  Freescale FRDM-KL25Z
§  ARM Cortex-M0+ CPU at 48MHz
§  128KB Flash, 16KB RAM

ST Nucleo

LPC1768
FRDM-KL25Z

8

ECC Curves

§ NIST curves: secp521r1, secp384r1, secp256r1, secp224r1,
secp192r1

§ “Koblitz curves”: secp256k1, secp224k1, secp192k1
§ Brainpool curves: brainpoolP512r1, brainpoolP384r1,

brainpoolP256r1
§ Curve25519 (only preliminary results).

§ Note that FIPS186-4 refers to secp192r1 as P-192, secp224r1 as P-224,
secp256r1 as P-256, secp384r1 as P-384, and secp521r1 as P-521.

9

Optimizations

§  NIST Optimization
§  Utilizes special structure of NIST chosen curves.
§  Appendix 1 of http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
§  Longer version in FIPS PUB 186-4:
§  http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
§  Relevant configuration parameter: POLARSSL_ECP_NIST_OPTIM

§  Fixed Point Optimization:
§  Pre-computes points
§  Described in https://eprint.iacr.org/2004/342.pdf
§  Relevant configuration parameter: POLARSSL_ECP_FIXED_POINT_OPTIM

§  Window:
§  Technique for more efficient exponentation
§  Sliding window technique described in https://en.wikipedia.org/wiki/Exponentiation_by_squaring
§  Relevant configuration parameter: POLARSSL_ECP_WINDOW_SIZE (min=2, max=7).

10

ECDSA, ECDHE, and ECDH

§  Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve variant of the
Digital Signature Algorithm (DSA) or, as it is sometimes called, the Digital Signature
Standard (DSS).

§  It is used in TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ciphersuite
recommended in CoAP (and consequently also in the DTLS profile draft).

§  ECDSA, like DSA, has the property that poor randomness used during signature
generation can compromise the long-term signing key.
§  For this reason the deterministic variant of (EC)DSA (RFC 6979) is implemented, which uses the

private key as a source or “entropy” to seed a PRNG.
§  Note: None of the prototyping boards listed in the slide deck provide true random number

generation.
§  CoAP recommends this ciphersuite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8

that makes use of the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE).
§  The Elliptic Curve Diffie-Hellman (ECDH) is only used for comparison purposes in this slide deck

but not used in the recommended ciphersuites.

11

Key Length

Symmetric ECC DH/DSA/RSA

80 163 1024

112 233 2048

128 283 3072

192 409 7680

256 571 15360

§  Tradeoff between security and performance.
§  Values based on recommendations from RFC 4492.
§  [I-D.ietf-uta-tls-bcp] recommends at least 112 bits symmetric keys.
§  A 2013 ENISA report states that an 80bit symmetric key is sufficient for legacy

applications but recommends 128 bits for new systems.

12

Observations: Performance Figures

§  ECDSA signature operation is faster than ECDSA verify operation.
§  Brainpool curves are slower than NIST curves because Brainpool curves

use random primes.
§  ECC key sizes above 256 bits are substantially slower than ECC curves

with key size 192, 224, and 256.
§  ECDH is only slightly faster than ECDHE (when fixed point optimization is

enabled).
§ CPU speed has a significant impact on the performance.
§ The performance of symmetric key cryptography (keyed hash functions,

encryption functions) is neglectable.

13

Observations: Optimizations

§ NIST curve optimization provides substantial benefit for NIST
secp*r1 curves.

§ Fixed point optimization has a significant influence on the
performance.

§ There is a performance – RAM usage tradeoff: increased
performance comes at the expense of additional RAM usage.

§ ECC library increases code size but also requires a fair amount of
RAM for optimizations (for most curves).

14

ECC Performance of the Cortex M3/M4

15

NIST curves: secp521r1, secp384r1, secp256r1, secp224r1, secp192r1
Koblitz curves: secp256k1, secp224k1, secp192k1

Performance of various NIST/Koblitz ECC Curves

16

Performance difference between signature vs. verify

For comparison:
secp192r1 (signature)

needs 66msec.

For comparison:
secp256r1 (signature)

needs 122msec.

17

For comparison:
Secp256r1 (signature)

needs 122msec.

Performance of Brainpool Curves

18

For comparison:
Secp256r1 (verify)
needs 458msec.

Performance of Brainpool Curves

19

For comparison:
secp192r1 (signature, W=7)

needs 66msec.

For comparison:
secp521r1 (signature, W=7)

needs 351msec.

Performance impact of the “window” parameter

20

The Performance Impact of the NIST Optimization

secp192r1 (ECDHE):
5986 msec (F401RE, optimization disabled)

vs.
638 msec (optimization enabled)

21

ECC Performance of the Cortex M0/M0+

22

ECDHE Performance of the KL25Z

23

ECDSA Performance of the KL25Z

24

+ FP optimization enabled

25

+ FP optimization enabled

26

+ FP optimization enabled

27

CPU Speed Impact

28

Performance of ECDHE: L152RE vs. LPC1768

secp192r1 (ECDHE):
1155 msec (L152RE) vs. 229 msec (LPC1768)

L152RE:
Cortex-M3 with 32MHz

LPC1768:
Cortex-M3 with 96MHz

NIST optimization enabled.
Fixed-point speed-up enabled.

29

Performance Comparison: Prototyping Boards

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

LPC1768, 96 MHz, Cortex
M3

L152RE, 32 MHz, Cortex
M3

F103RB, 72 MHz, Cortex
M4

F401RE, 84 MHz, Cortex
M4

Ti
m

e
(m

se
c)

Prototyping Boards

ECDSA Performance (Signature Operation, w=7, NIST Optimization Enabled)

secp192r1

secp224r1

secp256r1

secp384r1

secp521r1

30

Curve25519

(Warning: Preliminary Results)

31

Curve25519-mbedtls Curve25519-donna P256-mbed

ECDHE 1458 552 1145

0

200

400

600

800

1000

1200

1400

1600

m
se

c
FRDM-KL46Z (Cortex-M0+, 48 MHz)

Curve25519-mbedtls Curve25519-donna P256-mbed

ECDHE 506 58 391

0

100

200

300

400

500

600

m
se

c

FRDM-K64F (Cortex-M4, 120 MHz)
Notes:
•  The Curve25519-mbedtls implementation uses a generic

libary. Hence, the special properties of Curve25519 are not
utilized.

•  Curve25519 has very low RAM requirements (~1 Kbyte only).
•  Curve25519-donna is based on the Google implementation.

Improvements for M0/M0+ are likely since the code has not
been tailored to the architecture.

•  Question: Is Curve25519 a way to get ECC on M0/M0+?

Curve25519-mbedtls Curve25519-donna P256-mbed

ECDHE 598 94 432

0

100

200

300

400

500

600

700

m
se

c

LPC1768 (Cortex-M3, 96 MHz)

32

The Power of Assembly Optimizations

§  Example: micro-ecc library
§  https://github.com/kmackay/micro-ecc/tree/old
§  Written in C, with optional inline assembly for ARM and Thumb platforms.
§  LPC1114 at 48MHz (ARM Cortex-M0)

ECDH time (ms)	 secp192r1	 secp256r1	

LPC1114 	 175.7	 465.1	

STM32F091	 604,55	 1260.9	

ECDSA verify time (ms)	 secp192r1	 Secp256r1	

LPC1114 	 217.1	 555.2	

STM32F091	 845.5	 1758.8	

§  Performance improvement between 200 and 300 %

33

RAM Usage

34

What was measured?

§ Heap using a custom memory allocation handler (instead of malloc).
§ Memory allocated on the stack was not measured (but it is negligible).
§ Measurement was done on a Linux PC (rather than on the embedded

device itself for convenience reasons).
§ Two aspects investigated:

§  Memory impact caused by different window parameter changes.
§  Memory impact caused by FP performance optimization.

35

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDHE ECDHE ECDHE ECDHE ECDHE

Bytes

Cryptographic Computations

Heap Usage with Disabled FP Optimization w6

w=2

36

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDHE ECDHE ECDHE ECDHE ECDHE

B
yt

es

Cryptographic Operation

Heap Usage with FP Optimization Enabled

w=6 w=2

37

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
se

cp
52

1r
1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

se
cp

52
1r

1

se
cp

38
4r

1

se
cp

25
6r

1

se
cp

22
4r

1

se
cp

19
2r

1

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Sign

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDSA-
Verify

ECDHE ECDHE ECDHE ECDHE ECDHE

B
yt

es

Cryptographic Computations

Heap Usage (Window Size 6)
Enabled Optimization

Disabled Optimization

Note: NIST optimization enabled in both cases since it does not have an impact on the heap usage.

38

Summary

§  To enable certain optimizations sufficient RAM is needed. A tradeoff decision between
RAM and speed.

§  Optimizations pays off.
§  This slide shows

heap usage
(NIST optimization
enabled).

ECDSA-Sign ECDSA-Verify ECDHE

W=6, FP 4568 5380 5012

W=2, No FP 2972 3072 2692

0

1000

2000

3000

4000

5000

6000

B
yt

es

Heap Usage (secp256r1)

39

 Using ~50 % more RAM increases the performance by a factor 8 or more.

ECDSA-Sign ECDSA-Verify ECDHE
w=6, FP, NIST 122 458 431
w=6, no FP, NIST 340 677 644
w=2, no FP, NIST 378 759 734
w=2, no FP, no NIST 1893 3788 3781

0

500

1000

1500

2000

2500

3000

3500

4000

m
se

c
LPC1768 (secp256r1)

40

Applying Results to TLS/DTLS

41

Raw Public Keys with TLS_ECDHE_ECDSA_*

§  TLS / DTLS client needs to perform the following computations:
1.  Client verifies the signature covering the Server Key Exchange message that contains the server's

ephemeral ECDH public key (and the corresponding elliptic curve domain parameters).
2.  Client computes ECDHE.
3.  Client creates signature over the Client Key Exchange message containing the client's ephemeral

ECDH public key (and the corresponding elliptic curve domain parameters).
§  Summary:

§  1 x ECDSA verification for step (1)
§  1 x ECDHE computation for step (2)
§  1 x ECDSA signature for step (3)

§  Example (LPC1768, secp224r1, W=7, FP and NIST optimization enabled)
§  329msec (ECDSA verification)
§  303 msec (ECDHE computation)
§  85 msec (ECDSA signature)
Total: 717 msec

42

Applying Results to TLS/DTLS
Certificates with TLS_ECDHE_ECDSA_*

 1 x ECDSA verification
for server certificate

CA
Certificate

Server
Certificate

CA
Certificate

Intermediate CA
Certificate

Server
Certificate

CA
Certificate

1st Intermediate
CA Certificate

Server
Certificate

2nd Intermediate
CA Certificate

Same as with raw public key plus
(assuming no OCSP and certs are signed with ECC certificates)

1 x ECDSA verification
for Intermediate CA
certificate

1 x ECDSA verification for

server certificate

 1 x ECDSA verification
for 1st Intermediate
CA certificate

 1 x ECDSA verification
for 2nd Intermediate
CA certificate

 1 x ECDSA verification

for server certificate

43

Symmetric Key Cryptography

44

Symmetric Key Cryptography

§  Secure Hash Algorithm (SHA) creates a fixed length fingerprint based on an arbitrarily long input. The
output length of the fingerprint is determined by the hash function itself. For example, SHA256 produces
an output of 256 bits.

§  Advanced Encryption Standard (AES) is an encryption algorithm, which has a fixed block size of 128 bits,
and a key size of 128, 192, or 256 bits.

§  A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform
amounts of data larger than a block.

§  Examples of modes of operation: CCM, GCM, CBC.

§  Test relevant information:
§  SHA computes a hash over a buffer with a length of 1024 bytes.
§  AES-CBC: 1024 input bytes are encrypted. No integrity protection is used. IV size is 16 bytes.
§  AES-CCM and AES-GCM: 1024 input bytes are encrypted and integrity protected. No additional data is used. In

this version of the test a 12 bytes nonce value is used together with the input data. In addition to the encrypted
data a 16 byte tag value is produced.

45

Symmetric Key Crypto: Performance of the KL25Z

2.2

4.2

2.8
3.2

3.6

6
6.5

6.9

5.8

6.7

7.6

0

1

2

3

4

5

6

7

8

SHA-256 SHA-512 AES-
CBC-128

AES-
CBC-192

AES-
CBC-256

AES-
GCM-128

AES-
GCM-192

AES-
GCM-256

AES-
CCM-128

AES-
CCM-192

AES-
CCM-256

Ti
m

e
(m

se
c)

Cryptographic Operation

46

Symmetric Key Crypto: Performance of the LPC1768

0.6

1.4

0.7
0.8

0.9

1.8
1.9

2

1.7

1.9

2.1

0

0.5

1

1.5

2

2.5

SHA-256 SHA-512 AES-
CBC-128

AES-
CBC-192

AES-
CBC-256

AES-
GCM-128

AES-
GCM-192

AES-
GCM-256

AES-
CCM-128

AES-
CCM-192

AES-
CCM-256

Ti
m

e
(m

se
c)

Cryptographic Operation

47

Conclusion

§  ECC requires performance-demanding computations. Those take time.
§  What an acceptable delay is depends on the application.
§  Many applications only need to run public key cryptographic operations during the initial

(session) setup phase and infrequently afterwards.
§  With session resumption DTLS/TLS uses symmetric key cryptography most of the time

(which is lightning fast).

§  Detailed performance figures depend on the enabled performance optimizations
(and indirectly the available RAM size), the key size, the type of curve, and CPU
speed.

§  Choosing the microprocessor based on the expected usage environment is
important.

48

Next Steps

§ Collecting performance data on IoT devices is time-consuming.
We would appreciate help.

§  In particular, we need
§  Verification of the gathered data

§  Data from other crypto libraries

§  Further tests (energy efficiency, complete DTLS/TLS handshake data, data about
various extensions, more data for Curve25519, etc.).

§ We plan to update <draft-ietf-lwig-tls-minimal> accordingly.

