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Motivation 

§  In <draft-ietf-lwig-tls-minimal> we tried to provide guidance for the use 
of DTLS (TLS) when used in IoT deployments and included performance 
data to help understand the design tradeoffs.   

§  Later, work in the IETF DICE was started with the profile draft, which 
offers detailed guidance concerning credential types, communication 
patterns. It also indicates which extensions to use or not to use.  

§ Goal of <draft-ietf-lwig-tls-minimal> is to offer performance data based on 
the recommendations in the profile draft. 

§ This presentation is about the current status of gathering performance data 
for later inclusion into the <draft-ietf-lwig-tls-minimal> document. 
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Performance Data 
§ This is the data we want:  

§  Flash code size 
§  Message size / Communication Overhead 
§  CPU performance 
§  Energy consumption 
§  RAM usage 

§ Also allows us to judge the improvements of various extensions and gives 
engineers a rough idea what to expect when planning to use DTLS/TLS in 
an IoT product.  

§  <draft-ietf-lwig-tls-minimal-01> offers preliminary data about  
§  Code size of various basic building blocks (data from one stack only) 
§  Memory (RAM/flash) (pre-shared secret credential only) 
§  Communication overhead (high level only) 
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§ Goal of the authors: Determine performance of asymmetric cryptography 
on ARM-based processors.  

§ Next slides explains  
§  Assumptions for the measurements,  
§  ARM processors used for the measurements,  
§  Development boards used,  
§  Actual performance data, and  
§  Comparison with other algorithms.  

Overview 
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§ Main focus of the measurements so far was on  
§  raw crypto (and not on protocol exchanges) 
§  ECC rather than RSA 
§  Different ECC curves 
§  Run-time performance (not energy consumption, RAM usage, code size) 

§ No hardware acceleration was used.  
§ Used open source software; code based on PolarSSL/mbed TLS stack. 
§ No hardware-based random number generator in the development 

platform was used à Not fit for real deployment.  

Assumptions 
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ARM Cortex-M Processors 
 

Lowest cost 
Low power 

 
 

Lowest power 
Outstanding energy efficiency 

 
 

Performance efficiency 
Feature rich connectivity 

Digital Signal Control (DSC) 
Processor with DSP 
Accelerated SIMD 
Floating point (FP) 

Processors use the 32-bit RISC architecture 
http://www.arm.com/products/processors/cortex-m/index.php  

Recently released; 
Best performance 

Processors used 
in the performance 
tests 
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Prototyping Boards used in Performance Tests 
§  ST Nucleo F401RE (STM32F401RET6) 

§  ARM Cortex-M4 CPU with FPU at 84MHz 
§  512KB Flash, 96KB SRAM 

§  ST Nucleo F103 (STM32F103RBT6) 
§  ARM Cortex-M4 CPU with FPU at 72MHz 
§  128KB Flash, 20KB SRAM 

§  ST Nucleo L152RE (STM32L152RET6) 
§  ARM Cortex-M3 CPU at 32MHz 
§  512 KBytes Flash, 80KB RAM 

§  ST Nucleo F091 (STM32F091RCT6) 
§  ARM Cortex-M0 CPU at 48MHz 
§  256 KBytes Flash, 32KB RAM 

§  NXP LPC1768 
§  ARM Cortex-M3 CPU at 96MHz 
§  512KB Flash, 32KB RAM 

§  Freescale FRDM-KL25Z 
§  ARM Cortex-M0+ CPU at 48MHz 
§  128KB Flash, 16KB RAM 

ST Nucleo 

LPC1768 
FRDM-KL25Z 
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ECC Curves 

§ NIST curves: secp521r1, secp384r1, secp256r1, secp224r1, 
secp192r1 

§ “Koblitz curves”: secp256k1, secp224k1, secp192k1  
§ Brainpool curves: brainpoolP512r1, brainpoolP384r1, 

brainpoolP256r1 
§ Curve25519 (only preliminary results). 

§ Note that FIPS186-4 refers to secp192r1 as P-192, secp224r1 as P-224, 
secp256r1 as P-256, secp384r1 as P-384, and secp521r1 as P-521.  
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Optimizations 

§  NIST Optimization 
§  Utilizes special structure of NIST chosen curves.  
§  Appendix 1 of http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf  
§  Longer version in FIPS PUB 186-4: 
§  http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf 
§  Relevant configuration parameter: POLARSSL_ECP_NIST_OPTIM 

§  Fixed Point Optimization: 
§  Pre-computes points  
§  Described in https://eprint.iacr.org/2004/342.pdf  
§  Relevant configuration parameter:  POLARSSL_ECP_FIXED_POINT_OPTIM 

§  Window: 
§  Technique for more efficient exponentation  
§  Sliding window technique described in https://en.wikipedia.org/wiki/Exponentiation_by_squaring  
§  Relevant configuration parameter:  POLARSSL_ECP_WINDOW_SIZE (min=2, max=7). 
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ECDSA, ECDHE, and ECDH  

§  Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve variant of the 
Digital Signature Algorithm (DSA) or, as it is sometimes called, the Digital Signature 
Standard (DSS). 

§  It is used in TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ciphersuite 
recommended in CoAP (and consequently also in the DTLS profile draft).  

§  ECDSA, like DSA, has the property that poor randomness used during signature 
generation can compromise the long-term signing key.  
§  For this reason the deterministic variant of (EC)DSA (RFC 6979) is implemented, which uses the 

private key as a source or “entropy” to seed a PRNG.  
§  Note: None of the prototyping boards listed in the slide deck provide true random number 

generation.  
§  CoAP recommends this ciphersuite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 

that makes use of the Ephemeral Elliptic Curve Diffie-Hellman (ECDHE).  
§  The Elliptic Curve Diffie-Hellman (ECDH) is only used for comparison purposes in this slide deck 

but not used in the recommended ciphersuites.  



11 
 

Key Length 

Symmetric ECC DH/DSA/RSA  

80 163 1024 

112 233 2048 

128 283 3072 

192 409 7680 

256 571 15360 

§  Tradeoff between security and performance.  
§  Values based on recommendations from RFC 4492. 
§  [I-D.ietf-uta-tls-bcp] recommends at least 112 bits symmetric keys.  
§  A 2013 ENISA report states that an 80bit symmetric key is sufficient for legacy 

applications but recommends 128 bits for new systems.  
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Observations: Performance Figures 

§  ECDSA signature operation is faster than ECDSA verify operation. 
§  Brainpool curves are slower than NIST curves because Brainpool curves 

use random primes.  
§  ECC key sizes above 256 bits are substantially slower than ECC curves 

with key size 192, 224, and 256.  
§  ECDH is only slightly faster than ECDHE (when fixed point optimization is 

enabled). 
§ CPU speed has a significant impact on the performance. 
§ The performance of symmetric key cryptography (keyed hash functions, 

encryption functions) is neglectable.  
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Observations: Optimizations 

§ NIST curve optimization provides substantial benefit for NIST 
secp*r1 curves. 

§ Fixed point optimization has a significant influence on the 
performance. 

§ There is a performance – RAM usage tradeoff: increased 
performance comes at the expense of additional RAM usage.  

§ ECC library increases code size but also requires a fair amount of 
RAM for optimizations (for most curves). 
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ECC Performance of the Cortex M3/M4 
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NIST curves: secp521r1, secp384r1, secp256r1, secp224r1, secp192r1 
Koblitz curves: secp256k1, secp224k1, secp192k1 

Performance of various NIST/Koblitz ECC Curves 
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Performance difference between signature vs. verify 
 

For comparison:  
secp192r1 (signature)  

needs 66msec. 

For comparison:  
secp256r1 (signature)  

needs 122msec. 
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For comparison:  
Secp256r1 (signature)  

needs 122msec. 

Performance of Brainpool Curves 



18 
 

For comparison:  
Secp256r1 (verify) 
needs 458msec. 

Performance of Brainpool Curves 



19 
 

For comparison:  
secp192r1 (signature, W=7)  

needs 66msec. 

For comparison:  
secp521r1 (signature, W=7)  

needs 351msec. 

Performance impact of the “window” parameter 
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The Performance Impact of the NIST Optimization 

secp192r1 (ECDHE): 
5986 msec (F401RE, optimization disabled)  

vs.  
638 msec (optimization enabled) 
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ECC Performance of the Cortex M0/M0+ 
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ECDHE Performance of the KL25Z 
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ECDSA Performance of the KL25Z 
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+ FP optimization enabled 
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+ FP optimization enabled 
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+ FP optimization enabled 
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CPU Speed Impact 
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Performance of ECDHE: L152RE vs. LPC1768  
 

secp192r1 (ECDHE): 
1155 msec (L152RE) vs. 229 msec (LPC1768) 

L152RE:  
Cortex-M3 with 32MHz 

LPC1768: 
Cortex-M3 with 96MHz 

NIST optimization enabled. 
Fixed-point speed-up enabled. 
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Performance Comparison: Prototyping Boards 
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Curve25519 

(Warning: Preliminary Results) 
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Curve25519-mbedtls Curve25519-donna          P256-mbed 

ECDHE 1458 552 1145 
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Notes:  
•  The Curve25519-mbedtls implementation uses a generic 

libary. Hence, the special properties of Curve25519 are not 
utilized.  

•  Curve25519 has very low RAM requirements (~1 Kbyte only). 
•  Curve25519-donna is based on the Google implementation. 

Improvements for M0/M0+ are likely since the code has not 
been tailored to the architecture.  

•  Question: Is Curve25519 a way to get ECC on M0/M0+? 
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The Power of Assembly Optimizations 

§  Example: micro-ecc library 
§  https://github.com/kmackay/micro-ecc/tree/old  
§  Written in C, with optional inline assembly for ARM and Thumb platforms. 
§  LPC1114 at 48MHz (ARM Cortex-M0) 
 

ECDH time (ms)	   secp192r1	   secp256r1	  

LPC1114 	   175.7	   465.1	  

STM32F091	   604,55	   1260.9	  

ECDSA verify time (ms)	   secp192r1	   Secp256r1	  

LPC1114 	   217.1	   555.2	  

STM32F091	   845.5	   1758.8	  

§  Performance improvement between 200 and 300 % 
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RAM Usage 
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What was measured? 

§ Heap using a custom memory allocation handler (instead of malloc).  
§ Memory allocated on the stack was not measured (but it is negligible). 
§ Measurement was done on a Linux PC (rather than on the embedded 

device itself for convenience reasons).  
§ Two aspects investigated:  

§  Memory impact caused by different window parameter changes. 
§  Memory impact caused by FP performance optimization. 
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Summary 

§  To enable certain optimizations sufficient RAM is needed. A tradeoff decision between 
RAM and speed.  

§  Optimizations pays off. 
§  This slide shows 

heap usage 
(NIST optimization 
enabled). 

ECDSA-Sign ECDSA-Verify ECDHE 

W=6, FP 4568 5380 5012 

W=2, No FP 2972 3072 2692 
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      Using ~50 % more RAM increases the performance by a factor 8 or more.  

ECDSA-Sign ECDSA-Verify ECDHE 
w=6, FP, NIST 122 458 431 
w=6, no FP, NIST 340 677 644 
w=2, no FP, NIST 378 759 734 
w=2, no FP, no NIST 1893 3788 3781 
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Applying Results to TLS/DTLS 
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Raw Public Keys with TLS_ECDHE_ECDSA_* 

§  TLS / DTLS client needs to perform the following computations: 
1.  Client verifies the signature covering the Server Key Exchange message that contains the server's 

ephemeral ECDH public key (and the corresponding elliptic curve domain parameters).  
2.  Client computes ECDHE. 
3.  Client creates signature over the Client Key Exchange message containing the client's ephemeral 

ECDH public key (and the corresponding elliptic curve domain parameters).  
§  Summary: 

§  1 x ECDSA verification for step (1) 
§  1 x ECDHE computation for step (2)  
§  1 x ECDSA signature for step (3) 

§  Example (LPC1768, secp224r1, W=7, FP and NIST optimization enabled) 
§  329msec (ECDSA verification) 
§  303 msec (ECDHE computation) 
§  85 msec (ECDSA signature) 
Total: 717 msec 
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Applying Results to TLS/DTLS 
Certificates with TLS_ECDHE_ECDSA_* 

   1 x ECDSA verification 
for server certificate 
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(assuming no OCSP and certs are signed with ECC certificates) 
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Symmetric Key Cryptography 
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Symmetric Key Cryptography 

§  Secure Hash Algorithm (SHA) creates a fixed length fingerprint based on an arbitrarily long input. The 
output length of the fingerprint is determined by the hash function itself. For example, SHA256 produces 
an output of 256 bits.  

§  Advanced Encryption Standard (AES) is an encryption algorithm, which has a fixed block size of 128 bits, 
and a key size of 128, 192, or 256 bits. 

§  A mode of operation describes how to repeatedly apply a cipher's single-block operation to securely transform 
amounts of data larger than a block.  

§  Examples of modes of operation: CCM, GCM, CBC. 

§  Test relevant information:  
§  SHA computes a hash over a buffer with a length of 1024 bytes. 
§  AES-CBC: 1024 input bytes are encrypted. No integrity protection is used. IV size is 16 bytes.  
§  AES-CCM and AES-GCM: 1024 input bytes are encrypted and integrity protected. No additional data is used. In 

this version of the test a 12 bytes nonce value is used together with the input data. In addition to the encrypted 
data a 16 byte tag value is produced.   
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Symmetric Key Crypto: Performance of the KL25Z 
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Symmetric Key Crypto: Performance of the LPC1768 
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Conclusion 

§  ECC requires performance-demanding computations. Those take time.  
§  What an acceptable delay is depends on the application.  
§  Many applications only need to run public key cryptographic operations during the initial 

(session) setup phase and infrequently afterwards.  
§  With session resumption DTLS/TLS uses symmetric key cryptography most of the time 

(which is lightning fast).  

§  Detailed performance figures depend on the enabled performance optimizations 
(and indirectly the available RAM size), the key size, the type of curve, and CPU 
speed.  

§  Choosing the microprocessor based on the expected usage environment is 
important.  
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Next Steps 

§ Collecting performance data on IoT devices is time-consuming.  
We would appreciate help. 

§  In particular, we need  
§  Verification of the gathered data 

§  Data from other crypto libraries  

§  Further tests (energy efficiency, complete DTLS/TLS handshake data, data about 
various extensions, more data for Curve25519, etc.). 

§ We plan to update <draft-ietf-lwig-tls-minimal> accordingly.  


