Multicasting Applications Across Inter-Domain Peering Points

Percy S. Tarapore, AT&T Robert Sayko, AT&T Greg Shepherd, Cisco Toerless Eckert, Cisco Ram Krishnan, Brocade

Scope of Document

- Develop <u>Best Current Practice</u> (BCP) for Multicast Delivery of Applications Across Peering Point Between Two Administrative Domains (AD):
 - Describe Process & Establish Guidelines for Enabling Process
 - Catalog Required Information Exchange Between AD's to Support Multicast Delivery
- Identify "Gaps" (if any) that may Hinder Such a Process
- Current Status:
 - "Kitchen Sink" Approach towards BCP Development
 - Focus is on SP ⇔ SP interaction to setup service
- Discussion Requested (Goldilocks Rules):
 - Is the BCP Draft "Too Much", "Too Little", or "Just Right"?
 - What do we have to do get this ready for Last Call?

Revision History

- Vancouver 2012 Revision 0 Proposed as a BCP for Content Delivery via Multicast Across CDN Interconnections.
- Atlanta 2012 Revision 1 Preempted due to Hurricane Sandy
- Orlando 2013 Revision 2 Proposed as General Case for Multicast Delivery of Any Application Across two AD's:
 - CDNi Case is One Example of this General Scenario
- Berlin 2013 Revision 3 provides detailed text for Use Cases in section 3 → <u>Accepted as Working Group Draft.</u>
- Vancouver 2013 Revision 4 added new use case (section 3.5) & proposed guidelines for each use case in section 3.
- London 2014 Revision 5 added sections 4.1 (Transport & Security) & 4.2 (Routing) Guidelines.
- Toronto 2014 Revision 6 added text in section 4.3 Back-Office Functions
- Honolulu 2014 Revision 7 added text to sections 4.4 (Operations), 4.5 (Client Reliability Models), 5 (Security), & 7 (Conclusions

Draft Name Change??

- Draft initiated to address use of multicast for distributing CDN-I
- Initiated as:
 - draft-tarapore-mboned-multicast-cdni
- Adopted as WG document in Berlin (IETF 87) but draft indicator not changed
- Latest version: 07 of draft
- What should new name be and how can it be uploaded??

Section 2 - Overview

- Two Independent AD's Connected via Peering Point
- Peering Point is:
 - Multicast Enabled, or
 - Provisioned via a Tunnel which is Either:
 - GRE Tunnel, or
 - AMT
- Domain A is Multicast Enabled; Domain B May or May Not Be
- Application (e.g., Live Stream) Source in Domain A & End User (EU) Associated with Domain B.
- End User (One of Many EUs) Requests Application
- Application Delivered via Multicast from Source Through Peering Point to EU in Domain B

Section 3 – Use Cases

- 3.1: End-to-End Native Multicast
- **3.2**:
 - Native Multicast in Both Domains
 - Peering Point Enabled with GRE
- **3.3**:
 - Native Multicast in Both Domains
 - Peering Point Enabled with AMT Tunnel
- **3.4**:
 - Native Multicast in Domain A
 - No Multicast in Domain B
 - "Long Tunnel" Across Peering Point to End User
- **3.5**:
 - Same Scenario as 3.4
 - "Long Tunnel" broken up into chained series of shorter tunnels

Section 4 – Supporting Functions

- 4.1: Network Interconnection Transport & Security Guidelines
- 4.2: Routing Aspects:
 - 4.2.1: Native Multicast Routing
 - 4.2.2: GRE Tunnel Across Peering Point
 - 4.2.3: AMT Tunnels (Use Cases 3.3, 3.4, 3.5)
- Question: Should there be additional discussions on multicast protocols?
 - Resolve situation where the two domains may not utilize the same protocols??

Section 4 (continued)

- 4.3: Back Office Functions:
 - 4.3.1: Provisioning
 - 4.3.2: Application Accounting and Billing
 - 4.3.3: Log Management
 - 4.3.4: Settlements
- 4.4: Operations Service Performance & Monitoring
- 4.5: Client Reliability Models & Service Assurance

Ending Sections

- 5: Security Considerations
- 6: IANA Considerations
- 7: Conclusions:
 - Identified Need to Determine Method for Finding "Optimal"
 AMT Gateway ⇔ Relay Pairs to Support AMT Tunnel Setup