Updating The NFS RDMA Standards

Chuck Lever, Oracle Tom Talpey, Microsoft

Today's Purpose

- Confirm the NFS/RDMA specifications require attention
- Agree on a framework for updating these specifications
- Defer deep technical discussion

Useful Definitions

- A bulk payload is an RPC argument or result that is not immediately processed by the receiver, and is conveyed separately
 - The data portion of such an argument or result is eligible for RDMA transfer
- An **upper layer binding** is a set of rules that determine:
 - Which upper layer operations MAY send or receive bulk payload
 - Which RPC arguments or results MAY be considered bulk payload

Useful Definitions

- An **RPC/RDMA message** consists of
 - An RPC/RDMA header
 - An RPC header
 - An Upper Layer Protocol message
- The inline portion of an RPC/RDMA message is conveyed with RDMA SEND
- RPC/RDMA header represents bulk payload with chunks, which are conveyed separately

Useful Definitions

- With an RDMA_MSG proc, only chunks are moved via RDMA transfer; everything else is inline and moved via RDMA SEND
- With an RDMA_NOMSG proc, the RPC header, arguments or results, and ULP message are all moved via RDMA transfer

Existing Documents

- RFC 5666: "Remote Direct Memory Access Transport for Remote Procedure Call" (2010)
- RFC 5667: "Network File System (NFS) Direct Data Placement" (2010)
- Clustered with RFCs 5661 5665

RFC 5666: Needed Clarifications

- Restrictions on RDMA_NOMSG
- Padding requirements when there is inline content following a read chunk
- How to handle multiple bulk payloads in a single RPC

RFC 5666: Potential Enhancements

- In-band receive buffer size negotiation
- Bi-directional RPC
- Remote Memory Region invalidation
- Message chaining

RFC 5666: Strategies

- Clarifications only:
 - 1. Use errata process, and/or
 - 2. Create a normative "Updates" document
- Any extension or incompatible protocol change requires:
 - An RPC/RDMA protocol version bump
 - A new normative document

RFC 5667: Proposed Updates

- Section 5 (NFSv4.0/NFSv4.1) is inadequate
 - Is an operation in an NFSv4 COMPOUND an RPC argument?
 - No SYMLINK operation in NFSv4
- No upper layer binding is provided for pNFS operations
- NFSv4.2 introduces operations that could be eligible for RDMA (*e.g.* READ_PLUS)

RFC 5667: Strategies

- 1. Repair RFC 5667:
 - Leave NFSv2 and NFSv3 upper layer binding asis
 - Move NFSv4.0 and NFSv4.1 upper layer binding to a normative "Updates" document
- 2. Replace RFC 5667:
 - Create a normative "Obsoletes" document that copies RFC 5667 with corrections and replaces section 5 outright

Areas Not Covered by Existing Documents

RPC/RDMA with RPCSEC GSS

- Likely no issues with strong authentication
- How are bulk payloads handled when using integrity checking or encryption?
 - Current Solaris implementation uses
 RDMA_NOMSG

NFSv4.2 Upper Layer Binding

- At least READ_PLUS operation needs discussion
- One of the following could be used:
 - 1. Cover NFSv4.2 upper layer binding in the new NFSv4.0 and NFSv4.1 document
 - 2. Add NFSv4.2 upper layer binding to existing NFSv4.2 draft specification
 - 3. Cover NFSv4.2 upper layer binding in separate new document

Existing pNFS Layouts

- pNFS DS operations include:
 - READ and WRITE operations
 - Covered elsewhere (NFSv4.1, SCSI, etc.)
- pNFS MDS operations include:
 - Callbacks and layout-related operations
 - Large MDS operations need an upper layer binding

Additional Layout Types

- Transitional block-over-RDMA technologies
 - iSER
 - SRP
- Persistent memory technologies
 - NVMe on Fabrics
 - RDMA targeting byte-addressable persistent memory

Discussion and Hum