SPF_DELAY

draft-litkowski-rtgwg-spf-uloop-pb-statement-02 draft-decraene-rtgwg-backoff-algo-01

Bruno Decraene Orange Stéphane Litkowski Orange

draft-litkowski-rtgwg-spf-uloop-pb-statement

- 1. Problem statement.
- 2. Analyze how mixing different link state IGP implementations may increase micro-loops occurrence / duration.
- 3. Calls for a more standardized behavior of some components.
 - Mono vendor (network) is not an option, sorry ;-)
- In particular a standardized SPF back-off delay algorithm.
 - The most straightforward change
 - The biggest component to micro-loops
 - may add more than 1 or 2 second of micro-loops in typical deployments
 - may add micro-loops every time the back off algo is used.
 - cf IETF 90 (Toronto) meeting / slides

draft-decraene-rtgwg-backoff-algo-01

- Focus on standardizing a SPF back off delay (algorithm)
 - vendors would still be free to have a custom one,
 - IETF would still be free to define another one in the future.
- 1. Discuss requirements
- 2. Proposes one algorithm

SPF back off delay: requirements (1)

- Very fast convergence for single simple events (link failure).
 - majority of failures
 - a single LSP/LSA is enough (no need to wait for more)
- Fast convergence in general
 - in nominal situations when the IGP stability is considered "under control".
- A long delay when the IGP stability is considered "out of control"
 - in order to let all related processes calm down.
 - all previous quick SPF did not seemed to solve the issue anyway.

SPF back off delay: requirements (2)

- At any time, try to avoid using different SPF_DELAY values on nodes.
 - Even though all nodes do not receive IGP messages at the same time
 - due to difference in distance from the source
 - due to different flooding implementations on the path from the source.

- Nodes A performs 2 SPFs while node B performs 3 SPFs.
- ➔ if SPF_DELAY increases after each SPF, different nodes will use different SPF_DELAY
 - Even though nodes A & B have the same SPF delay algorithm and see the same LSPs.

A proposed SPF_delay algorithm (1) Definition

- IGP event:
 - An LSDB change requiring a new RIB computation
 - topology change, prefix change, metric change...
 - No distinction done between the type of computation performed
 - e.g. full SPF, incremental SPF, PRC...
 - The type of computation is a local consideration
 - allowing for liberty and different strategy between vendors.

A proposed SPF_delay algorithm (2) To initiate discussion

- Only 3 SPF_DELAY values
 - INITIAL_WAIT: a very small delay to quickly handle first event
 - e.g. 0 millisecond
 - Target: quickly react to link failure.
 - FAST_WAIT: a small delay to have a fast convergence. e.g. 50-100 millisecond.
 - we want to be fast, but not too fast: as this failure requires multiple IGP events, being too fast increase the probability to receive additional IGP events just after the RIB computation.
 - Target: node failure, SRLG failures
 - LONG_WAIT: a long delay as IGP is unstable.
 - Let's bring calm in the IGP. e.g. 2 seconds.
 - Target: the unknown / the ugly

A proposed SPF_delay algorithm (3)

- First IGP event:
 - trigger SPF after INITIAL_WAIT
- Subsequent IGP events:
 - trigger SPF after FAST_WAIT
 - until from TIME_TO_CONVERGE since first IGP event
- Subsequent IGP events:
 - trigger SPF after LONG_WAIT
 - until no IGP events during HOLD_DOWN

SPF_delay algorithm Summary

Legend: LSP reception

Discussion

- Proposed algorithm seems to fill all requirements.
- But still, the purpose of this algo is to initiate discussion.
 - not meant to be final.

Next steps

- Both drafts presented in IETF 90 (Toronto).
- Good discussions both during the meeting and on the mailing list.
 - and off list discussions
- Would like to request WG adoption of both drafts.
- Discussion on the mailing list about requirements and algorithms.

Thank you