LFA selection for Multi-homed Prefixes

draft-psarkar-rtgwg-multihomed-prefix-lfa-01

Pushpasis Sarkar <u>psarkar@juniper.net</u> Shraddha Hegde <u>shraddha@juniper.net</u> Hannes Gredler <u>hannes@juniper.net</u> Chris Bowers <u>cbowers@juniper.net</u> Bruno Decraene <u>bruno.decraene@orange.com</u>

Agenda

- Background
- Update on version 01
- Next Steps

Background

- Version-00 presented in IETF-92
- Implementation Guidelines
 - Explicit Inequalities
 - LFA selection for internal Multi-homed Prefixes(MHPs).
 - LFA selection for external Multi-homed Prefixes(MHP).
 - Special rules to handle various scenarios in OSPF
- Use Cases
 - Increase Coverage for FRR
 - Tail-end Protection

Downstream Paths Consideration

- 1. Downstream Path criterion MUST be standardized
 - Micro-loops may form if different routers use different criteria.
- 2. RFC 5286 is not decisive about downstream criterion for multi-homed prefix
 - MUST prefix cost be considered or not?
 - §1: "No" (Inequality 2 refers to Nodes)
 - §6.1 (Multi-Homed): "SHOULD" but "MAY NOT"
 - Inconsistent implementations MAY use different downstream path criteria
 - MAY form Micro-loops.

Update in 01 version

- More contributors
- New section added with more explicit text on rules to select
 - Link-protecting LFA for MHPs
 - Downstream-only LFA for MHPs
 - Node-protecting LFA for MHPs

Update in 01 version

Rules for selecting Link/Node-protecting LFA for MHPs via alternate neighbor N

- 1. If alternate neighbor N is also prefix-originator of P,
 - 1. Select N as a LFA for prefix P (irrespective of the metric advertised by N for the prefix P)
- 2. Else, evaluate the link/node-protecting LFA inequality for P with the N as the alternate neighbor.
 - 1. If LFA inequality condition is met,
 - 1. select N as a LFA for prefix P.
 - 2. Else,
 - 1. N is not a LFA for prefix P.

Update in 01 version

Rules for selecting Link-protecting + Downstream-only LFA for MHPs via alternate neighbor N

- 1. Evaluate the link-protecting + downstream-only LFA inequality for P with the N as the alternate neighbor.
 - 1. If LFA inequality condition is met,
 - 1. select N as a LFA for prefix P.
 - 2. Else,
 - 1. N is not a LFA for prefix P.

Next Steps

- Questions ?
- Adoption as a WG draft ?

Motivations

- Lack of specific inequalities for MHPs
 - Diferrent scenarios need different handling
 - Specially external MHPs.
 - Erroneous implementations
 - Less coverage than feasible.
 - Backup path chosen may still loop.
- Share experience gained from existing implementations and provide future guidance
 - Propose MHP LFA inequalities
 - For all types of MHPs
 - Internal Prefixes
 - External Prefixes
 - For all applicable protocols(ISIS, OSPF)

Background

Inequalities for LFA selection for MHPs

- Link-Protection: D_opt(N,PO_i)+ Cost(PO_i,P) < D_opt(N,S) + D_opt(S,PO_best) + Cost (PO_best,P)
- Link-Protection + Downstream-paths-only: D_opt(N,PO_i)+ Cost(PO_i,P)
 D_opt(S,PO_best) + Cost (PO_best,P)
- Node-Protection:

D_opt(N,PO_i)+ Cost(PO_i,P) < D_opt(N,E) + D_opt(E,PO_best) + Cost (PO_best,P)

Background

Notations	
Ρ	 The Multi-homed prefix being evaluated.
S	- The computing router
Ν	 The alternate router being evaluated
E	- The primary next-hop on shortest path from
PO_i	S to MHP prefix P. - The specific prefix-originating router being evaluated.
PO_best	 The prefix-originating router on the shortest path from the computing router S to prefix P.
Cost (X,P)	 Cost of reaching the prefix P from prefix originating node X.
D_opt(X,Y)	 Distance on the shortest path from node X to node Y.

LFA Selection for External MHPs

- ISIS
 - Same as LFA selection for internal MHPs
- OSPF
 - Multiple Considerations to select and trim alternate ASBRs
 - **RFC1583Compatibility** is required or not. If not,
 - Primary ASBR and Alternate ASBR *belonging to different* areas or not. If not,
 - » ASBR is permitted as per the *pruning rules of OSPF* [RFC2328 section 16.4.1] or not.
 - Cost Type advertised by the ASBR same or not
 - *Route-type* advertised by the ASBR same or not

– Apply Inequalities on selected ASBRs.

OSPF Inequalities for External MHPs

- Link-Protection: *F_opt(N,PO_i)* + Cost(PO_i,P) < D_opt(N,S) + *F_opt(S,PO_best)* + Cost(PO_best,P)
- Link-Protection + Downstream-paths-only: *F_opt(N,PO_i)* + Cost(PO_i,P) < *F_opt(S,PO_best)* + Cost(PO_best,P)
- Node-Protection:
 F_opt(N,PO_i) + Cost(PO_i,P) <

- **F_opt(X,Y)**
- Distance on the shortest path from node X to Forwarding address specified by ASBR Y.

^{) +} Cost(PO_best,P)

OSPF Inequalities for External MHPs

N,PO_i)+ Cost(PO_i,P D_opt(N,S) + D_opt

Cost (PO_best,P)

-only:

D_opt(N,PO_i)+ PO_i,P) < D_opt(S,PO_best) + Cost (PO_best,P)

• Node-Protection:

D_opt(N,PO_i)+ Cost(PO_i,P) < D_opt D_opt(E,PO_best) + Cost (PO_best,P)