
Our pre-TAPS work on transport services
Michael Welzl

TAPS, 92nd IETF meeting
23. March 2015

2

Outline / disclaimer

•  Overview of results documented in MSc. thesis + paper
–  [Stefan Jörer: A Protocol-Independent Internet Transport API,

MSc. Thesis, University of Innsbruck, December 2010]
–  [Michael Welzl, Stefan Jörer, Stein Gjessing: "Towards a

Protocol-Independent Internet Transport API”, FutureNet IV
workshop, ICC 2011, June 2011, Kyoto Japan]

•  Not a proposal for how things should be: TAPS work
should be more extensive, more up to date, make better,
more informed decisions
–  But we learned some lessons back then, perhaps useful

3

 Design method

•  Bottom-up: TCP, UDP, SCTP, DCCP, UDP-Lite

–  start with lists from key references + RFCs

•  Step 1: from list of protocol features, carefully
identify application-relevant services
–  features that would not be exposed in APIs of the

individual protocols are protocol internals
–  e.g. TCP, SCTP: ECN, selective ACK

4

Result of step 1

•  x = always on, empty = never on; 0/1 = can be turned on or off
•  2/3/4 = choice between CCIDs 2, 3, 4
•  P1 = partial error detection; t = total reliability, p2 = partial

reliability
•  s = stream, m = message; o = ordered, u = unordered

5

Expansion

•  A line for every possible
combination of features
–  43 lines: 32 SCTP, 3 TCP/

UDP

•  List shows reduction
possibilities (step 2)
–  e.g. flow control coupled with

congestion control
–  duplicates, subsets

6

Reduction method for step 2

•  Remove services that seem unnecessary as a
result of step 1 expansion

•  Apply common sense to go beyond purely
mechanical result of step 1
–  Question: would an application have a reason to say

“no” to this service under certain circumstances?
(but not purely because of environment conditions)

–  Features that are just performance improvements if they

are used correctly (i.e. depending on environment, not
app) are not services

7

Step 2

•  Connection orientation
–  Removing it does not affect service diversity
–  User view: API is always connection oriented
–  on the wire, non-congestion-controlled service will

always use UDP or UDP-Lite
–  static distinction, clear by documentation

•  Delivery type
–  easy for API to provide streams on top of message

transport
–  no need to expose this as a service

8

Step 2, contd.

•  Multi-streaming
–  Performance improvement, depending on environment

conditions / congestion control behavior, not an application
service

•  Congestion control renamed è “flow characteristic”

•  Multi-homing kept although not an app. service
–  We felt this is a more complex discussion / decision
–  could still be removed above our API

9

Result
of
Step 2

10

API Design

•  Goal: make usage attractive = easy
–  stick with what programmers already know: deviate as

little as possible from socket interface
•  Most services chosen upon socket creation

–  int socket(int domain, int service)
–  service number identifies line number in table
–  understandable aliases: e.g. PI_TCPLIKE_NODELAY,

PI_TCPLIKE, PI_NO_CC_UNRELIABLE for lines 1-3
•  Sending / receiving: provide sendmsg, recvmsg;

for services 1,2,11,17: send, recv

11

API Design /2

•  We classified features as
1.  static: only chosen upon socket creation

•  flow characteristic
2.  configurable: chosen upon socket creation +

adjusted later with setsockopt
•  error detection, reliability, multi-homing

3.  dynamic: no need to specify in advance
•  application PDU bundling (Nagle in TCP)
•  delivery order: socket option or flags field

12

Backup slides

13

Implementation example

•  Unordered reliable
message delivery
with SCTP
–  removes head-of-

line (HOL) blocking
delay

•  Local testbed,
2 Linux PCs

14

How is this achieved?

•  Based on
draft- ietf- tsvwg-
sctpsocket-23

•  Could not make this
work in our testbed
(suspect: bug in
SCTP socket API)

15

How is this achieved? /2

•  SCTP, version 2 (this worked)
–  socket(PF_INET, SOCK_STREAM, IPPROTO_SCTP)
–  set SCTP_NODELAY with setsockopt
–  followed by (10 parameters!):
sctp_sendmsg(sockfd, textMsg, msgLength,
NULL, 0, 0, SCTP_UNORDERED, 1, 0, 0);

•  PI_API version
–  pi_socket(PF_INET, 12);
–  pi_sendmsg(sockfd, &msg, 0);

16

Thank you!

Questions?

