draft-popov-token-binding-00

Andrei Popov, Microsoft Corp.



The Token Binding Protocol

* The client generates an asymmetric Token Binding key per target
server.

* The client proves possession of the Token Binding key on every TLS

connection, by signing the tls_unique value [RFC5929] with the
private key.

* The Token Binding is identified by the corresponding public key.

* Token Bindings are long-lived, i.e. they encompass multiple TLS
connections and TLS sessions between a given client and server.

* Token Binding private key MUST be strongly protected (e.g. using a
secure hardware module).




Preventing Token Theft

* When issuing a security token to a client that supports Token Binding,
a server includes the client's Token Binding ID in the token.

* Later on, when a client presents a security token containing a Token
Binding ID, the server makes sure the ID in the token matches the ID
of the Token Binding established with the client.

* In the case of a mismatch, the server discards the token.

* In order to successfully export and replay a bound security token, the
attacker needs to also be able to export the client's private key, which
is hard to do in the case of a strongly-protected key (e.g. generated in
a secure hardware module).



Privacy

* Different Token Binding keys SHOULD be used by the client for
connections to different servers, according to the token scoping rules
of the application protocol (e.g. eTLD for HTTP).

* Token Binding identifiers are never transmitted in clear text.

* Token Binding keys can be deleted by the user at any time, e.g. when
clearing browser cookies.



Open Issue: Negotiating Token Binding Key

Parameters

The current draft uses ALPN protocol IDs RFC7301Lto negotiate the use of the Token
Binding key parameters (signature algorithm, length):

h2 tb _p256 HTTP/2 with Token Binding using ECDSA key and NIST P256 curve
h2 tb rsa2048 HTTP/2 with Token Binding using 2048-bit RSA key
http/1.1_tb_p256 HTTP/1.1 with Token Binding using ECDSA key and NIST P256 curve
http/1.1_tb_rsa2048 HTTP/1.1 with Token Binding using 2048-bit RSA key

Pros:

 No TLS protocol changes;

* No additional round-trips.

Cons:

e Cartesian explosion of ALPN IDs;

* TLS ClientHello grows large, triggers interop issues with certain middle boxes;

* Protocols other than HTTP will need to register a separate set of ALPN IDs.

Should we consider a new TLS extension to negotiate Token Binding key parameters?



Links And Contact Information

* The Token Binding Protocol Version 1.0:
http://tools.ietf.org/html/draft-popov-token-binding-00

* Token Binding over HTTP:
http://tools.ietf.org/html/draft-balfanz-https-token-binding-00

* On GitHub: https://github.com/TokenBinding/Internet-Drafts

* Dirk Balfanz balfanz@google.com

* Vinod Anupam vanupam@google.com

* Andrei Popov andreipo@microsoft.com




The Token Binding Protocol Message Format

struct {
ExtensionType extension_type;
opague extension_data<0..2716-1>;
} Extension;
struct {
TokenBindinglID tokenbindingid;
opaque signature<0..2216-1>;// Signature over hashed ("token binding", tls_unique)
Extension extensions<0..2716-1>;
} TokenBinding;
struct {
TokenBinding tokenbindings<0..2216-1>;
} TokenBindingMessage,;



Token Binding ID Format

enum {
provided token_binding(0), referred_token_binding(1), (255)
} TokenBindingType,;
struct {
TokenBindingType tokenbinding_type;
SignatureAndHashAlgorithm algorithm;
select (algorithm.signature) {
case rsa: RSAPublicKey rsapubkey;
case ecdsa: ECDSAParams ecdsaparams;

}
} TokenBindingID;

* Provided token_binding is used to establish a Token Binding when connecting to a server.
* Referred_token binding is used when requesting tokens to be presented to a different server.



