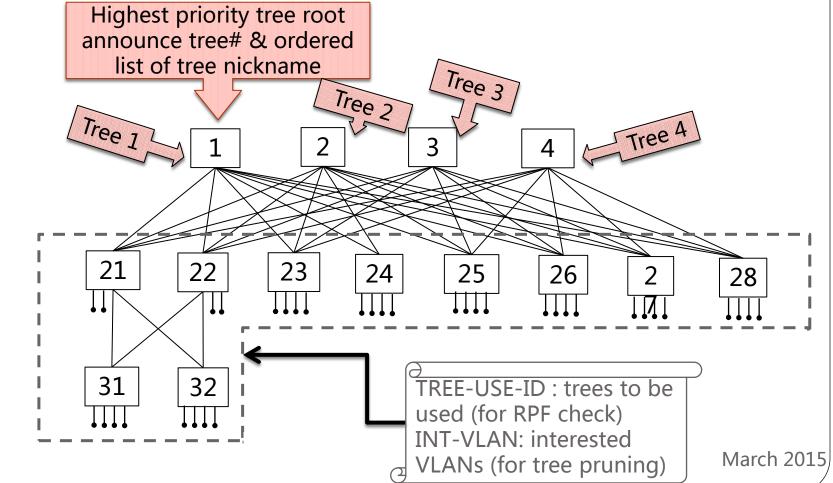
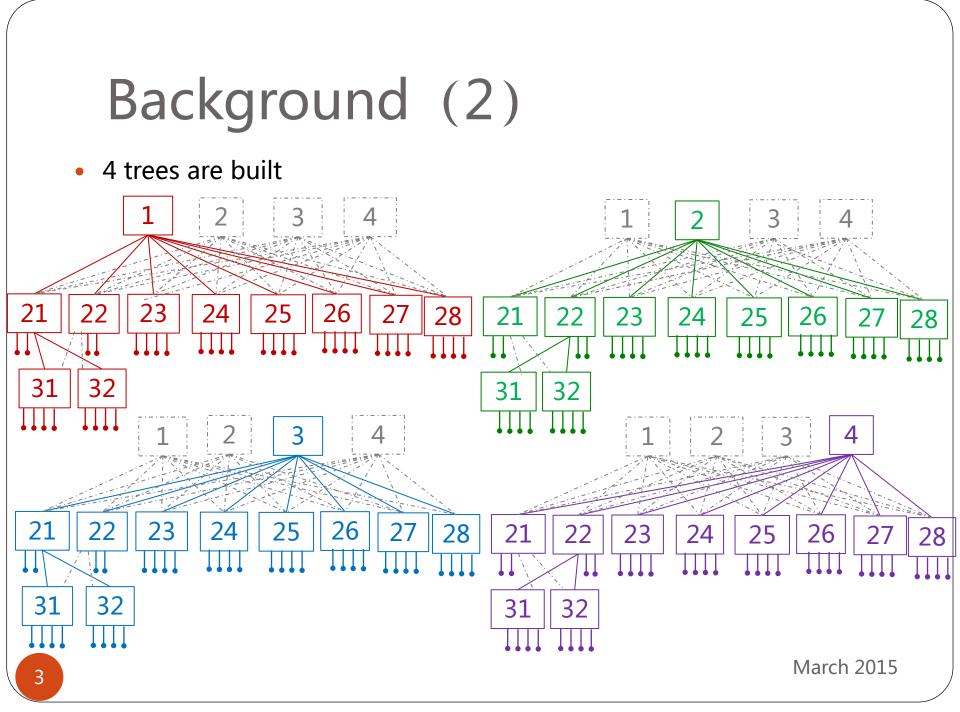
Data Label Based Tree Selection for Multi-destination


draft-yizhou-trill-treeselection-04


liyizhou@huawei.com

March 2015

Background (1)

 Each distribution tree SHOULD be pruned per VLAN

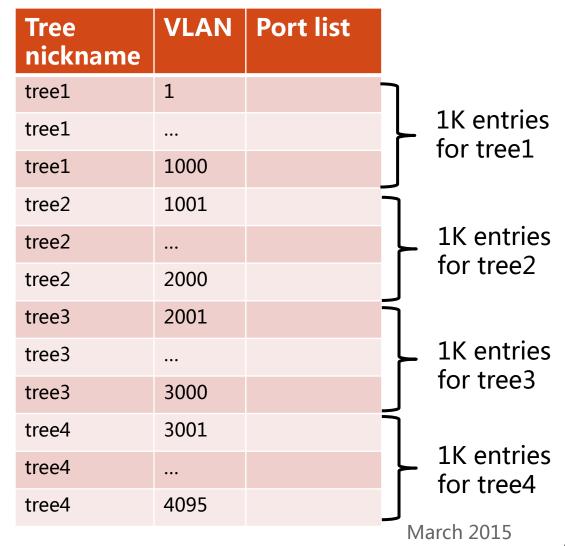
Motivations (1)

• Multicast forwarding table on RB21 has 16K entries.

Tree nickname	VLAN	Port list	ר ר
tree1	1	1, 31, 32, local access ports	4K entries
tree1			for tree1
tree1	4095	1, 31, 32, local access ports	1
tree2	1	2, local access ports	4K entries
tree2			for tree2
tree2	4095	2, local access ports	f
tree3	1	3, 31, 32, local access ports	4K entries
tree3			for tree3
tree3	4095	3, 31, 32, local access ports	1
tree4	1	4, local access ports	4K entries for tree4
tree4			
tree4	4095	4, local access ports	March 2015

Motivations (2)

- Table size = n*m entries. (n is #of trees, m is #of VLANs with downstream receivers).
- More entries required if L2/L3 multicast address is to be used for further pruning.
- Linearly increasing with # of trees.
- Table size is limited. May share a 8K/16Kentry table with IP multicast/VSI forwarding entries.
- Proposed: Data Label (VLAN or FGL) based tree selection to reduce the table size.
 - still allows the traffic sharing among trees


VLAN based Tree Selection

• Concept:

- Highest priority tree root announces tree-VLAN correspondence which is the value pair of (tree id, VLANs allowed on this tree id).
- Ingress RB selects the tree-VLAN correspondence it is interested in and wishes to use from the list.
- It should not transmit VLAN x frame on tree y if the highest priority tree root does not say VLAN x is allowed on tree y.
- Achieved VLAN based load balancing by selecting different trees.

VLAN based Tree Selection Example

- If we let the highest priority tree root announces:
 - (tree1, Vlan 1-1000)
 - (tree2, Vlan 1001-2000)
 - (tree3, Vlan 2001-3000)
 - (tree4, Vlan 3001-4095)
- Ingress selects and announces (tree id, interested vlan) from the announced tree-VLAN correspondence
- Multicast table entries are reduced to 4K (maximum).
- Table size shrunk:
 - n * m → m

Updates from last revision

- Change from "VLAN" to "Data Label" to include FGL (Fine Grained Label (RFC 7172)) case.
- The (sub-)TLVs are put into E-L1FS (Extended Level 1 Flooding Scope) FS-LSPs [RFC7356].
- Re-use Group Sub-TLVs format as per defined in GADDR TLV [RFC7176] rather than a new format for multicast extension.
- Editorial changes.

Next Step

Ready for Call for Adoption