
WebPush + HTTP/2 + IoT

IETF 92



Push Scenarios
There are two primary scenarios which must be addressed: 

• Web applications in a mobile user agent and

• Embedded devices receiving push messages from cloud 
services through an intermediate field gateway - a reasonably 
powerful device (capable of secure HTTP/2 communications), 
which acts as a local agent. 



draft-thomson (Simplified Flow)

Device
Push 

Server
Application 

Server

Push Message

Subscribe (params:push:sub)

urn:ietf:params:push

Push Message(s)

Register

urn:ietf:params:push:reg (registration)
urn:ietf:params:push:sub (subscribe)

Monitor (params:push:reg)

Provide Subscription (params:push)



Feedback: Registration

To enable aggregation of push message delivery, Registration 
adds complexity to the protocol (both the registration and 

expiration process) and requires the Push Server to manage the 
overhead of Registration-Subscription relationships.

There are scenarios where aggregation is not required.



Feedback: Message Expiration

A push server that does not allow the application server to 
recommend an expiration (time-to-live) for a message may store 
and deliver messages that are stale, incurring additional power 

drain on the device for a message to be discarded.



Feedback: Application Reliability

A push server that does not support reliable delivery over 
intermittent network connections or failing applications on 

devices, forces the device to acknowledge receipt directly to the 
application server, incurring additional power drain in order to 

establish (usually secure) connections to the individual 
application servers.



draft-damaggio (Simplified Flow)

Device
Push 

Server
Application 

Server

Push Message

Push Message

Subscribe

urn:ietf:params:push

Monitor (params:push)

Provide Subscription (params:push)

Acknowledge Push Message
Monitor (params:push:receipt) 

Push Receipt

urn:ietf:params:push:receipt



Proposed Changes to draft-thomson
• Remove dependency on Registration/Subscribe resources

– Simplifies protocol flow and subscription lifecycle

– Simplifies the Push Server by eliminating maintenance of Registration-
Subscription relationships

• Provide two methods for the User Agent to request push messages:
– Request on Subscription resource 

– Request on Subscription resource (w/Prefer Wait)

• Eliminate aggregation (performing a GET on a Registration resource 
to receive messages for all subscriptions for a User Agent)

• Eliminate collapsing (performing a GET on a Subscription resource 
to get the last message). 
– Different collapsing or coalescing policies for messages can be added if 

required.



Proposed Changes to draft-thomson
• Add a requirement for the User Agent to confirm delivery of 

messages from the Push Server

• Add a request message format (JSON) for push messages
– Include request_receipt option to allow the Application Server 

to request a delivery confirmation from the Push Server 

– Include time_to_live option to allow Application Server to 
recommend a message expiration to the Push Server



Open Issues

• The response message format of the delivery receipt is TBD. 

• Should the push server return a 400 if the requested 
time_to_live exceeds its storage limits?

• How would proposed message encryption impact Push Server 
directives such as such as request_receipt and time_to_live?
– Should directives be modeled as custom HTTP headers?



Next Steps

We would like to explore whether a mind-meld of draft-thomson
and draft-damaggio could be the basis for a WebPush-00 draft.


