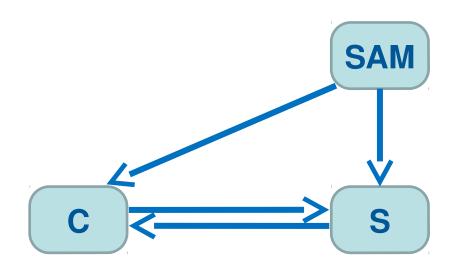
draft-cuellar-ace-pat-priv-enhanced-authz-tokens-00

IETF 93 PraGue 2015

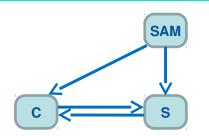
Our focus: Constrained Devices


- Powered by battery
 - Button cell
 - AA battery
- Energy Harvesting

Memory Constraints	RAM	Flash
C1	10 kB	100 kB

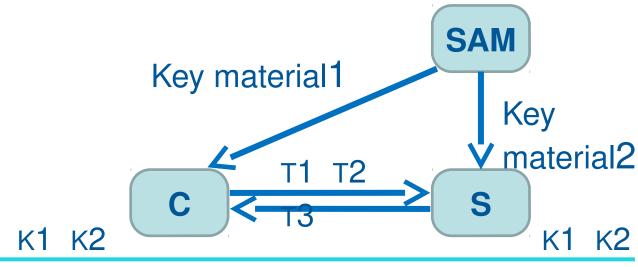
Actors (as in DCAF)

- Server: hosts & represents CoAP resource(s)
- C Client: attempts to access a resource on S
- SAM Server Authorization Manager: prepares and endorses authentication and authorization data for S



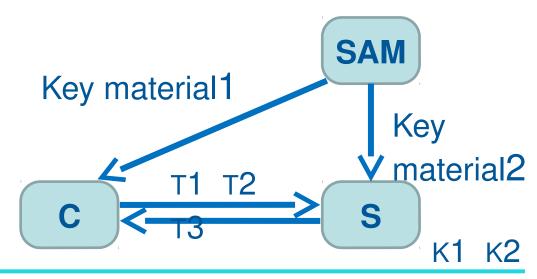
Possible (conflicting) Goals

- Privacy
 - Confidentiality
 - Consent of Resource Owner (RO)
 - Non-linkability of Identities of Communication Partners (C & S)


- C is allowed to send commands to S
- C is allowed to receive data from S
- DoS Resilience
- Energy Consumption:
 - AES < SHA2 < Transmission < 3DES << ECC
- Code Size: SHA2 < ECC < 3DES < AES</p>

One solution possibly does not fit all

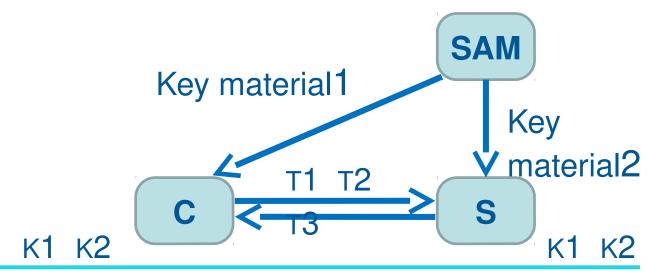
- In some cases Privacy is not an issue
- In some cases, C gets one response per request
 - in others, C subscribes to a stream
- In some cases DoS resilience only under stress...



K3⁵

One solution possibly does not fit all

- Many ways of constructing tokens/keys
 - Given some key material
 - The has trees in the draft ia only one example
- Many ways of using them
 - As One-Time-Pads
 - For DTLS
 - AES/MACs
 - TESLA



K1 K2

A possible way forward

- Define a generic protocol
- with some very lightweight versions
- Based on CoAP
 - But not necessarily on DTLS (optional)

K37