ALTO Extension: Routing State Abstraction
using Declarative Equivalence

draft-gao-routing-state-abstraction-00
draft-yang-alto-topology-06

Presenter: Wendy Roome/Young Lee

July 21, 2015 @ IETF 93

Bigger Picture

* A general objective of ALTO is to

_ | Application ‘
provide network state to
applications for better traffic ﬁ
engineering Abstract State

i
e Itis important that ALTO provide ALTO

abstract network states, to ﬁ
— protect information privacy Raw State
— improve scalability ﬁ

| Network ‘

Key Question: How to Compute Abstract State

* Basic approach: static template (e.g., single-node
template)

-

What we learned from the path-vector example
Each core link: 100 Mbps; edge 1G

d1

s1 1ink6

linkl

7.

2

PID1 %9 \/‘w/f\\‘ PID3
>

PID2 ~§' ink12 PID4

s2 d2

e App requests available bandwidth for two pairs:
— PID1 (eh1) -> PID3 (eh3); PID2 (eh2) -> PID4 (eh4)
e Ambiguity of cost map based on single-switch abstraction:
— Two disjoint paths (200 Mbps when concurrent), e.g.,
e PID1 ->PID3: sw5 ->swb6 -> sw8;
e PID2 ->PID4: sw5 ->sw7 ->sw8
— Shared bottleneck (still 100 Mbps when concurrent)

Our General Design Approach

e ALTO server computes dynamic, minimal network
state

— Compute abstract state that is smaller but equivalent to
application required

| Application ‘
" A
Raw —_— Abstract
State E— State

ALTO Extension: Routing State Abstraction Service
based on Declarative Equivalence (RSA-DE)

* Why routing state

Application ‘

— Routing state is basic ﬁ

— Current focus of ALTO (e.g., cost map,
ECS) is mostly on routing state Abstract State
. ALTO ‘
* We may consider other types of

network state in future extensions ﬁ

Raw State

1

Network ‘

Routing State Abstraction Service

equiv-cond

Application
N

abstract
routing state

ALTO Server

How to Specify flow-1ist

e This is relatively straightforward
— Server announces matching capabilities in IRD
e E.g., IP address only, allowing ports, ...
e Incremental deployment: allows IP only

— A flow-list is a list of flows, where each flow is specified by a
matching condition (e.g., OpenFlow like) condition

How to Specify equiv-cond: Intuition

e General structure of a network application
— Has a set of flows
— Has a set x of variables (e.g., rate of each flow)

—|Has a goal: min/satisfy obj(x)
S.t.
X satisfies constraints

— obj(x) or the constraints may use network information, e.g.,
e obj = x[1] * routingcost(fl) + x[2] * routingcost(f2)
e any link e: sum(x[i]: fi uses link e) £ bw(e)

 equiv-condis to convey the usage of network
information in the application

raw
state

Example

Each core link: 100 Mbps; edge 1G4

oo+, P o o

bw
1G
100M
100M
100M
100M
1G

Given routing for given flows, the network raw
state can be considered as a set of vectors,
where each vector’s dimension is the number
of edges (links):

- r]i][e]: a vector representing if flow i uses link
e. For example, r[2] shows that the route of
flow 2 uses links 3/4, ..., not links 1/2/5/6, ...

- attr[e]: is the value of attr for link e. For
example, bw[e] is the available bandwidth of
link e.

10

raw
state

Example

Each core link: 100 Mbps; edge 1G4

oo+, P o o

bw
1G
100M
100M
100M
100M
1G

A nalve approach is to return
the whole raw network state

11

raw
state

Example

Each core link: 100 Mbps; edge 1 / linE6

] bw . . .

App decision variables: x[1], 2] .
0 1G pp Ision vari x[1], x[2]
O 1OOM equiv-cond: Lambda specification of
1 100M . .

app usage of network state in constraints:
1 100M

any e: r[l][e] * x[1] +
0 100M
0 1G riz2] [e] * x[2]

<= bwle]

12

raw
state

Example

Each core link: 100 Mbps; edge 1G4

oo+, P o o

bw
1G
100M
100M
100M
100M
1G

Insight: If the attributes of a
link e do not appear in a tight
(independent) constraint, the
link does not need to be
known to the app.

13

Implementation

e ALTO will not define the implementation, the
discussion of implementation is to show feasibility
and help with understanding

* Steps to implement RSA-DE
— ALTO server looks up routing for each flow i to obtain r|i]
e E.g., looks up in Flow Rule Manager (FRM) in ODL/ONOS

— ALTO server applies redundancy elimination to find the
minimal set of independent links

14

Example

Each core link: 100 Mbps; edge 1G4

1inko

1G

15

Example: Result

Each core link: 100 Mbps; edge 1G

s1

P
&
~y

)¢

? f\/
N

s, > d;: {ane,(<100M) }
s, ->d,: {ane,(<100M) }

1inkl

Example: Result

Each core link: 100 Mbps;
edge 1G except link1=50M li?6

s, ->d,: { ane,(<100M), ane,(<50M) }
s, ->d,: {ane,(<100M)}

17

Summary

* RSA-DE provides a powerful, general interface
to allow applications to obtain network state

— It is a generalization of the previous path-vector
design

— It works in the new SDN setting

— More details on RSA-DE see backup slides

* Interest in the WG to pursue this direction as
an ALTO extension?

18

Backup Slides

How to Specify equiv-cond

e Link Properties: announced in IRD capabilities
— r[i] must be supported
— bw, delay, loss, routingcost, ...
* equiv—-cond
e Variables: A list of opaque variables
e Constraints: A list of lambda inequality expression for a
given link, e.g., any e in E:
r{l][e]*x[1l] + r[2][e]*x[2] <= bwl[e]
e To simplify the representation:
— [e] can be ignored since it is implied.
— Allow meaningful variable names
— Use underscore to represent array instead of brackets

20

How to Specify equiv-cond (cont.)

equiv-cond

constraint
0P
linear-expression

constraint | constraint, equiv-cond
linear-expression OP linear-Expression
<P >l <=1>1-=

constant | link-property-name | variable
constant * linear-expression
link-property-name * linear-expression
-linear-expression

linear-expression + linear-expression

21

How to Specify equiv-cond (cont.)

* The order to parse a constraint
— Symbols in the variable-list:
e As variables
— Symbols announced as capabilities
e As link-property—names
— Symbols for mathematical constants
e As constants
— Unknown symbols
e As undefined if the variable-list is provided
e As variables if intelligent parsing is enabled

22

How to Specify equiv-cond (cont.)

variable-list
variable

rs—-query
flow-1list
flow

variable | variable, variable-list
[a-zA-Z] [0-9a-zA-Z-]*

flow-list constraint-list [variable-list]
flow | flow, flow-list
generic-match-condition

23

How to Specify equiv-cond (cont.)

query”: { An example where the user

"flows": [.
o creates two flows with three

"dst": "ipv4:192.168.1.22",

"src": "ipv4:192.168.0.11", Variables.

"tcp-dstport": "80"

A — Variables £0 and £1 represent
"dst": "ipv4:192.168.3.44", 1
oot viovdi 197, 168.2.33" the bandwidth for each flow.
, cpemereh T — Variable u represents the
b maximum link utilization.

"conditions": [
"y 0%f0 + r_1%fl <= bandwidth",
"r_0xf0 + r_1xfl <= ux*capacity"
1,
"yvariables": [
"fO",
llflll’
llull

Routing State Abstraction Service: Query Input

rs—query flow-1list equiv-cond
flow—-1l1ist := flow [flow-list]
flow generic-match-condition

* App provides two input parameters
— flow-1ist: A set of flows

e Consider the flexibility of SDN, which allows routing
based on generic matching (e.g., 5 tuples) => each flow
is specified by generic matching condition

— equiv-cond: app declared equivalency condition

Path Vector: Example

HTTP/1.1 200 OK
Content-Length: TDB
Content-Type:
application/alto-costmap+json

{ "meta" : {
"dependent-vtags" : |
{ "resource-id": "my-default-network-map”,
"tag": "3ee2cb7e8d63d9fab71b9b34cbf764436315542¢e” },
{"resource-id": "my-topology-map",
"tag": "4xee2cb7e8d63d9fab71b9b34cbf76443631554de"

}

],
"cost-type" : {"cost-metric”: “bw”, "cost-mode" : "path-vector” },
"cost-map"” : {
"PID1": {"PID1":[], "PID2":["ne56", "ne67"], "PID3":[], "PID4":['"ne57"]
}

"i3lD2": {"PID1":["'"ne73"], "PID2"[], "PID3":["ne75"], "PID4":[]

L
}

26

