
A Scheduling Hub Service (SHS)
for Application Data Transfers

draft-wang-alto-large-data-framework-01

Presenter: Haibin Song

July 21, 2015 @ IETF 93

Problem

• A network may have a large number of large-data data
transfer applications, e.g.,
– Big data app (MapReduce, Spark)

– Science data transfer

• Many duplicate functionalities, e.g.,

– Application-layer traffic optimization (ALTO)

• Cross-app coordination is difficult

2

Proposed Solution

• A scheduling hub service to
– implement common functionalities (reduce app complexity)
– provide cross-app coordinations (achieve better network-wide

utility)

ALTO

Scheduler

App1

SDN

App2

Data transfer requests

Network info Network capacities

3

Key Design Points

• Service API

– Simple, flexible, to capture application needs

• Scheduling algorithm

– Able to collect and utilize network info (e.g., ALTO)

– Able to utilize additional network capabilities (e.g., SDN
customized routing)

• The focus of this document is the service API, which
can benefit from standardization

4

Application Transfer is not As Simple As You Think

5

• Example: A MapReduce App

• Suppose an MR round has 10 mappers and 5 reducers.
Each mapper transfers data to each reducer. There will
be 50 transfers in all in the round.

…
. . .

Mapper Reducer
M1

M10

R1

R5

MapReduce round goal:
Minimize the finishing time of
all transfers, not one
individual transfer.

Service API: Requirements

• Allow application to dynamically manage data
transfer jobs (e.g., add and remove jobs).

• Allow application to provide basic job information
and requirements (e.g., file size, QoS timing).

• Allow application to convey dependency and
coordination (e.g., MapReduce grouping).

6

Service API

• An application can create a set of jobs:

– register() -> jobID: register a job

– unregister(jobID): unregister a job

• Each job can contain a set of transfer tasks

– createTaskDesc(type, [args]) -> task: create a task
description

– addTask(jobID, task) -> taskID: add a task to a job

– removeTask(jobID, taskID): remove task by jobID
and taskID

7

Basic Model

• Application Compute-Transfer Structure

– Computation logic of application can be divided into several pieces of
small (partial) data computations

– Data computations are connected by data transfers

• Convey the structure to Directed Acyclic Graph (DAG) for expressing
application requirements for SHS

– Each node is a computation

– Each link is a data transfer

• Abstract computation of nodes in DAG

– Express the communication requirements:

• Dependency type, e.g., all | one

• Throughput matching

• Pipelining, blocking

• Deadline

8

For SHS, it does not need to
know the exact computation.

Example: A MapReduce App

…
.
.
.

Mapper Reducer

M1

M10

R1

R5

• Using Application Compute-Transfer Structure, a MapReduce job (the
example before) can be expressed by 15 data computations and 50 data
transfers, as shown below:

Data transfer

Computation

9

Abstract the computation for
expressing communication
requirements

A0

Data transfer

Abstract
Computation

Mappers don’t need to
be encoded

Abstraction can be very flexible!

…

A1

A5

… …

…

A6
…

50 10

Map the Model to Design

• DataTransferTask (for link in DAG)

– Manages the basic info for data transfer, like src, dst, file
size, and offset

– Should reflect the performance requirements by application,
like deadline

• SyncTask (for node in DAG)

– Set attributes for expressing the communication
requirements

10

Task Details

11

• DataTransferTask:

– src: the src of data transfer task

– dst: the dst of data transfer task

– dataSize: the size of data

– offset: the offset of data

– deadline: the deadline of the task

• SyncTask:

– [dependencies]: a set of DataTransferTasks it depends on

– [attributes]: the attributes of the task

API Example

12

Map Reduce:

val jobID = register ()

val task_1 = createTaskDesc("DataTransferTask", "src"="m1", "dst"="r1",
"dataSize"="100", "offset"="0")
…
val task_50 = createTaskDesc("DataTransferTask", "src"="m10", "dst"="r5",
"dataSize"="300", "offset"="0")
val task_0 = createTaskDesc("SyncTask", "dependences"=[task_1,…,task_50],
"dependency_type"="all")

val taskID_1 = addTask(jobID, task_1)
…
val taskID_50 = addTask(jobID, task_50)
val taskID_0 = addTask(jobID, task_0)

JSON: Map Reduce Example
 {

 "job-id" : "00",

 "task": {

 "type" : "data-transfer-task",

 "src" : "http://192.168.0.0/bigdata/mapreduce/map0.data",

 "dst" : "http://192.168.1.0/bigdata/mapreduce/reduce0.data",

 "data-size" : "100", "offset" : "0"

}
 }

 {

 "job-id" : "00",
 "task": {

 "type" : "sync-task",

 "dependencies" : ["01", "02", … , "50"],

 "dependency_type" : "all"
 }
 }

13

Application Scope of the Service

• Data Center

– Big data applications (MapReduce, Spark) with
customised requirements can optimise data
transfer by the service.

• ISP

– Non-real-time applications, such as backups,
migration of data, can achieve efficient usage of
bandwidth.

14

Backup Slides

15

Compared with Coflow, NetStitcher

• SHS
– DataTransferTask defines the basic info of data transfer

– SnycTask defines the relations (e.g. dependency) between data
transfers

• Coflow
– Considers the flows in the coflow are independent

– Dependency is between coflows

• NetStitcher
– An overlay system comprising of a sender, intermediate nodes, and

a receiver node

– It schedules data transfers over the overlay

16

join(v)
leave(v)
send(v, u, F)

Compared with Coflow

17

A0 A1 …
.
.
.

M1

M10

R1

R5

The abstraction has the same effect as coflow

N1 N2

N3

N4

Coflow is difficult to set objective on N4 for
coordinating T2 and T3, while it’s easy for ours!

T1
T3

T2

YANG Model

module: transfer-job

 +--rw job

 +--rw data-transfer-tasks* [task-id]

 | +--rw task-id task-id

 | +--rw src? uri

 | +--rw dst? uri

 | +--rw dataSize? int64

 | +--rw offset? Int64

 | +--rw deadline? time

 +--rw sync-tasks* [task-id]

 | +--rw task-id task-id

 | +--rw dependencies* task-id

 | +--rw attributes* [attribute-type]

 | +--rw attribute-type string

 | +--rw attribute-value string

 +--rw job-id? job-id

18

From Application’s View

• Application focuses on the processing of the data
– Data processing can be divided into several pieces based on the

location of computing
– Each piece should be linked by data transfer
– Each piece depends on the former one

19

Server1 Server2 Server3

Data Transfer

Data Processing

Follows application’s logic,
data is transmitted along
Server1->Server2->Server3

Data transfers should also have
dependency!

Can be a set of servers
like mapreduce

Data Transfer Dependency

• The dependency of data transfer affects data processing at each
server

• Each server along the path needs a synchronization to handle
dependency for the correctness of data processing

20

All dependences need synchronization!

Server1 Server2 Server3

Data transfer1 Data transfer2

Needs a synchronization to ensure
data transfer2 cannot start until dat
a transfer1 finishes

The whole process can be denoted by
several data transfers and several syn
chronizations (connect data transfers)

