Intent Distribution for Autonomic Networking

(draft-liu-anima-intent-distribution-00)

Bing Liu (speaker), Sheng Jiang @Anima WG, ietf93, Jul 2015

Introduction

- Intent Distribution is considered as one of the common control and management functions of an autonomic network
 - [RFC7575] (Autonomic Networking: Definitions and Design Goals)
 - [behringer-anima-reference-model]
- Not in current charter, but should be a necessary component
- This draft contains:
 - Analysis of generic Intent Distribution requirements and bearing protocol requirements
 - A specific solution based on Anima Signaling Protocol (GRASP)

Generic Requirements

- Distributed to the whole domain
- De-coupling of Intent Content and Bearing Protocol
- Avoiding signaling storm
- Arbitrary Intent injecting point (Optional)
- Conflict handling (Optional)

Bearing Protocol Requirements

• Distribution approaches

- Point-to-Point
- Multicast (on-link)
- Flooding (multi-hops)

Messaging

- Request-Response
 - Mostly for Point-to-Point distribution
- Unsolicited advertisement
 - Mostly for on-link multicast and flooding
 - For flooding, two alternatives:
 - ASAs interpret the Intent content and translation the flooding into hop-byhop point-to-point communications (e.g. Synchronization in GRASP)
 - Dedicated "Unsolicited advertisement" messaging

Fragmentation Consideration

 when an intent packet needs to be split, it might need to be split into fragments each of which could be interpreted individually

Extension to GRASP 1/3

Intent Option

 0
 1
 2
 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1
 1 2 3 4 5 6 7 8 9 0 1

 |
 OPTION_INTENT
 |
 option-len
 |

 |
 OPTION_INTENT
 |
 option-len
 |

 |
 Flood TTL
 |
 Reserved
 |
 Sequence Number
 |

 |
 Domain ID of the Source Node of the Message
 |
 I
 I
 I

 |
 TBD
 |
 I
 I
 I
 I

 |
 Intent Content
 |
 |
 .
 .

 .
 .
 .
 .
 .
 .

- F (flooing) flag: indicating the intent needs to be flooded or not
- Flood (hop)TTL: limiting the hops that an Intent message could travel
- Sequence number: to uniquely identify an intent option

Extension to GRASP 2/3

- Initiating Node behavior
 - If it is NOT a flooding intent, the "Intent Distribution ASA" generates the Intent Option and calls the GRASP module to send the Intent Option in a unicast message (e.g. Request Message or Sync message)
 - If it is a flooding intent, the ASA calls the GRASP module to multicast the message to all it's neighbors (e.g. through a Discovery Message)
- Receiving Node behavior
 - The GRASP module extracts the Intent Option and handle it up to the "Intent Distribution ASA".
 - If it is NOT a flooding intent, the ASA calls the GRASP module to response a Negotiation-Ending message with a Accept Option
 - If it is a flooding intent, the node multicast the option again to all it's neighbors.

Extension to GRASP 3/3

- Flooding control
 - Loop Avoidance
 - Every node maintains a flooding state table which stores each interface's record that whether a specific intent option had been received or sent from it.
 - The option identification could be the combination of the Sequence Number and Node ID in the Intent Option.
 - The node MUST NOT send a flooding Intent Option message to the interfaces that had received or sent the same Intent Option.
 - Flooding TTL
 - To guarantee the packet would not travel in a infinite loop in the network.

(Note: this might also apply to multi-hop discovery in GRASP)

Next Steps

- Open to discuss the requirements whether they are sufficient or necessary
- Open to discuss the solution

Your comments are welcomed and appreciated!

Comments?

Thank you!

IETF93, Prague