
Cheap quantum-safe cryptography without 
breaking anything

William Whyte, 2015-07-22



Problem

• Quantum computers make it trivial to break RSA, ECC, DH, …
– Current TLS traffic is susceptible to a harvest-then-decrypt attack from a 

passive attacker
– Not clear when quantum computers will come

• Would like to thwart this attacker -- 
– Quantum-safe public key encryption / key exchange algorithms exist!

● NTRUEncrypt, Ring-Learning With Errors, McEliece, …
– Good performance, reasonable key/ciphertext size (*except McEliece), 

key generation times that support forward secrecy

• But migrating public key algorithms is a pain
– We’re only just managing to move from RSA to ECDHE



Possible solutions

• 1. Define a quantum-safe ciphersuite
– Solves the problem!
– but…

● No community consensus on a quantum-safe 
encryption algorithm

– CFRG hasn’t even discussed it
● Not clear there’s appetite to roll out a whole new set of 

algorithms given that the ECC discussion is still going 
on 

● No good quantum-safe signatures

• 2. “Quantum-safe” existing ciphersuites



ntor

• Designed to be as 
efficient as possible

• Instantiated with 
curve25519 for key 
exchange

• Authenticated 
publication = signing 
with self-certified 
long-term key

Client Node

G, G given as system parameters

b Rand 
#G
B = bG

Publish B in authenticated way

x Rand #G
X = xG

y Rand #G
Y = yG

X 

S1 = yX | bX

 Y

S1 = xY | xB

K = KDF (S1, “B”, X, Y …)

ntor



qs-ntor (with NTRU)

ntor

Client Node

G, G given as system parameters
NTRUEncrypt parameters N given as system parameters

b, B = bG

Publish B in authenticated way

x, X = xG
(sk, pk)  NTRUGen

y, Y = yG

X, pk 

S1 = yX | bX
S2  Rand
c = NTRUEnc (pk, S2)

 Y

S1 = xY | xB
S2 = NTRUDec (sk, c)

K = KDF (S1, “B”, X, Y, S2, pk …)



qs-ntor

• A quantum-safe circuit extension handshake for 
Tor, https://eprint.iacr.org/2015/287

– Hardwires NTRUEncrypt as quantum-safe key 
establishment algorithm but can be modified to be 
modular wrt QSKE

• Includes “proof” that it doesn’t make things any 
worse

• Feature Request being prepared for Tor 
community review

– Will include modular approach to QSKE

https://eprint.iacr.org/2015/287
https://eprint.iacr.org/2015/287


TLS proposal

• draft-whyte-qsh-tls12, draft-whyte-qsh-tls13 – variants for TLS 1.2 and 1.3
• Create

– Quantum-safe hybrid ciphersuite identifier (QSH)
– Extensions for quantum-safe public key and ciphertext

• ClientHello includes 
– QSH identifier
– “Classical” ciphersuite identifier(s)
– Ephemeral public key for quantum-safe algorithm

• Server
– Carries out handshake for preferred classical handshake
– Encrypts fresh 256-bit secret with quantum-safe public key

• Pre-master secret is concatenation of PMS from classical handshake and 
quantum-safe secret (+ details)

• Working code: https
://www.wolfssl.com/wolfSSL/Blog/Entries/2015/7/13_Quantum-Safe_wolfSSL
.html

https://www.wolfssl.com/wolfSSL/Blog/Entries/2015/7/13_Quantum-Safe_wolfSSL.html
https://www.wolfssl.com/wolfSSL/Blog/Entries/2015/7/13_Quantum-Safe_wolfSSL.html
https://www.wolfssl.com/wolfSSL/Blog/Entries/2015/7/13_Quantum-Safe_wolfSSL.html


Choice of QSKE algorithm

• NTRUEncrypt
– Patented, patents owned by my employer, Security 

Innovation
● IPR statement filed with IETF

– Patents usable under GPL
– Standardized in IEEE 1363.1-2008, X9.09-2010
– Security estimates: Choosing Parameters for 

NTRUEncrypt, https://eprint.iacr.org/2015/708
● 2015 paper: results are consistent with 2007 analysis

• Learning with Errors
• McEliece (but v large keys)

https://eprint.iacr.org/2015/708
https://eprint.iacr.org/2015/708


QSKE Algorithm Performance

Keygen

curve25519 229122 128

nistp256 407840 128

Ntruees401 3515864 112

Ntruees439 4166783 128

Ntruees593 7419863 192

ntruees743 11595377 256

mceliece 43888384

ronald1024 96102734 80

ronald2048 441432861 112

ronald3072 1468301823 128

ronald4096 3031198275

Encrypt/DH
mceliece 67207

Ntruees401 116265 112

Ntruees439 128478 128

Ntruees593 192834 192

Curve25519 219190 128

ntruees743 281846 256

ronald1024 803999 80

nistp256 1409776 128

ronald2048 3342162 112

ronald3072 9287658 128

ronald4096 19807361



Matching security levels (1)

• For 128-bit classical security:
– 128-bit secure public key system

● 256-bit ECDHE 
– 128-bit symmetric

● AES, etc

• For 128-bit post-quantum security
– 128-bit post-quantum secure public key system

● Quantum security of quantum-safe QSKE algorithms is not enormously well 
studied

● Classical level of 256 bits is almost certainly enough, lower classical security is 
quantum-safe with high probability

– Folklore is 256-bit symmetric security
● Not clear this is necessary – Grover’s (quantum) algorithm nominally halves 

symmetric key length but has huge constants
● However,  AES-256 is not significantly slower than AES-128



Matching security levels (2)

• Best:
– ECDHE-256 + AES-256 + (say) NTRU-743

• Probably good enough:
– ECDHE-256 + AES-128 + (say) NTRU-743



Next steps

• Hybrid approach provides a sensible way to allow 
parties to get a reasonable level of quantum-safety 
now while not breaking anything

• Suggest that CFRG:
– Works on a draft describing this approach
– Maintains a list of algorithms suitable for use within the 

hybrid setting
– Starts to build up expertise on quantum-safe crypto to 

make future recommendations on QSKE algorithms 
that are suitable for use on their own


	Slide 1
	Problem
	Possible solutions
	ntor
	qs-ntor (with NTRU)
	qs-ntor
	TLS proposal
	Choice of QSKE algorithm
	QSKE Algorithm Performance
	Matching security levels (1)
	Matching security levels (2)
	Next steps

