
Based on a review of

draft-ietf-cose-msg-01

Mike Jones

IETF 93

Prague

July 2015

Key Issues and Choices

for COSE

1

*

Key Issues and Choices for

COSE

2

 Our goals should include:

 Keeping simple things simple

 Making complex things possible, when necessary

 Compactness of representations

 Compactness of implementations

 Leading to adoption

 Presentation identifies potential areas for

simplification

Example: Direct MAC

Current Representation

 { 1 (typ): 3 (MAC),

 2 (protected): h'a1016f4145532d434d41432d3235362f3634',

 ({1 (alg): “AES-CMAC-256/64”})

 4 (payload): h'546869732069732074686520636f6e74656e742e',

 (“This is the content.”)

 10 (tag): h'd9afa663dd740848',

 9 (recipients): [

 { 3 (unprotected): {

 1 (alg): -6 (direct),

 5 (kid): h'6f75722d736563726574‘ (“our-secret”)

 } }

]

 }

3

Example: Direct MAC

Possible Simplifications

 { 1 (typ): 3 (MAC),

 2 (protected): h‘encoding TBD',

 ({1 (alg): “AES-CMAC-256/64”

 5 (kid): h'6f75722d736563726574‘ (“our-secret”)

 })

 4 (payload): h'546869732069732074686520636f6e74656e742e',

 (“This is the content.”)

 10 (tag): h'd9afa663dd740848'

 }

 Simplifications applied

 Flattened serialization (no “recipient”)

 Removed key management layer -6 (direct)

4

Choice: Representation of

Single-Recipient Content

 Current draft always uses recipients array

 Always a singleton for single recipient

 Even for direct content, currently always two

sets of header parameters

 Those describing the cryptographic operations

 Those describing the recipient

 In single recipient case we could:

 Eliminate the “recipients” tag and the array

 Have only one set of header parameters
5

Choice: Representation of

Key Management

 Current draft always includes key

management structure, even when “direct”

 An alternative is to include a key

management structure only when needed

 Omit it in the “direct” case and combine headers

 This still allows having one “alg” parameter,

versus JOSE which required two (“alg”, “enc”)

 Note: This approach allows multiple levels of key

management by nesting, like Jim’s Appendix B

6

Choice: Use Maps or

Arrays at Top Level

 Current draft uses maps

 Alternative is to define array representations of

signed, MACed content, encrypted

 Analogous to JOSE compact serializations

 May make representing key management messier

 Would key management maps also become arrays?

 Or would headers for levels be combined, requiring different

“alg” parameters like JOSE’s “alg” and “enc”?

 How to identify the different types?

 CBOR type prefix or first array element?

 I’m personally OK staying with maps

 Seems like there’s fewer special cases that way 7

Choice: Overloaded or

Single Use Label Values

 Current draft overloads map labels with

different meanings onto same value

 E.g., 4 for both payload and ciphertext

 No obvious disadvantage to using different

labels when meanings different

 Some advantages, such as more

comprehensibility of encoding

 Also may avoid conflicts that aren’t apparent now

but may occur when extensions defined

 I’d personally recommend single use labels 8

Choice: Concatenate Tag to

Ciphertext or Keep Separate

 Do we represent authenticated encryption

output with one or two parameters?

 “ciphertext”: ciphertext, “tag”: authentication tag or

 “ciphertext”: ciphertext || authentication tag

 AES GCM [SP 800-38D] specified as

providing two output parameters

 JOSE kept the separate parameters separate

 TLS and some other specs concatenate them

 Already a “tag” parameter used by MACs
9

Issue: Confusing Header

Parameter Descriptions

 Some names copied from JOSE should be

changed:

 “jku” to “cku” (COSE Key URL)

 “jwk” to “ck” (COSE Key)

10

Choice: Which Header

Parameters to Standardize

 Issue 1 in the draft: “Which of the following

items do we want to have standardized in

this document: jku, jwk, x5c, x5t, x5t#S256,

x5u, zip”

 I’d advocate cku, ck, x5c, x5t, x5t#S256, x5u,

zip

 Related choice:

 Do we also want to have “jku” (JWK URL) to point

to keys in JWK format in addition to “cku”?

11

Choice: Include JOSE Alg

Names in COSE Alg Registry

 Advantages of doing so:

 Ability to reuse JOSE alg registrations by just

defining short labels for them

 Clearer documentation when same algs can be

used in both JOSE and COSE

 Encourages registration of algs defined for use by

COSE to also be registered for use with JOSE

 For example, AES-CMAC

 Reduces duplication

 Don’t see much downside in doing so
12

Issue: Why the asymmetry

between sig & mac structs?

Sig_structure = [

 body_protected: bstr,

 sign_protected: bstr,

 payload: bstr

]

 versus

MAC_structure = [

 protected: bstr,

 external_aad: bstr,

 payload: bstr

]
13

Choice: Define “use” Key

Member

 JOSE “use” has two values: “sig”, “enc”

 Based on XML DSIG/ENC key use definition

 Useful for public keys

 Single valued

 JOSE “key_ops” value an array

 Based on WebCrypto API

 WebCrypto API does define how “use” works as well

 Useful for public and private keys

 Semantic compatibility with other systems

argues for keeping it 14

Request: Add Symbolic

Annotations to Examples

 {
 1 (typ): 3 (MAC),

 2 (protected): h'a1016f4145532d434d41432d3235362f3634',

 ({1 (alg): “AES-CMAC-256/64”})

 …

 versus
 {

 1: 3,

 2: h'a1016f4145532d434d41432d3235362f3634',

 …

15

