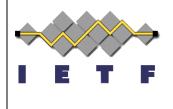
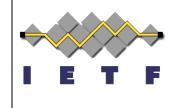
DetNet BoF IETF #93


DetNet Problem Statement

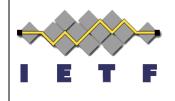
Monday, July 20th, 2015 Norman Finn

draft-finn-detnet-problem-statement

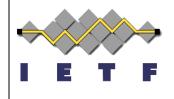
Contents



- What do the presented users' requirements have in common?
- Which of these are candidates for DetNet to solve?
- Mapping users' wants to existing technologies.
- Resource Reservation? Seriously?
- Problems for DetNet WG to solve


What do the presented user requirements have in common?

Characterizing the users' critical data streams



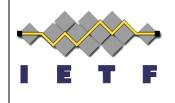
- Fixed bandwidth; back pressure is not an option
- Wide range of data rates
- Too much aggregate critical data to simply prioritize and overprovision
- Must replace scattered, ad hoc, and proprietary solutions with an open, standard, solution compatible with the rest of the world

What do the users want from the network?

- Time synchronization
- Guaranteed worst-case latency, preferably low
- Low, sometimes extremely low, packet loss probability
- Convergence of critical streams and existing QoS mechanisms (not just "best effort") on the same network

What kinds of networks?

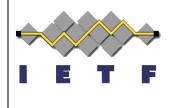
- Bridged, routed, and mixed
- Wired, wireless, and mixed


Which of these problems are candidates for Detnet to solve?

Which "wants" are DetNet's problem space?

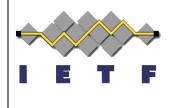
- Time synchronization is being handled by other WGs and other SDOs.
- Guaranteed worst-case latency, preferably low Yes!
- Low, sometimes extremely low, packet loss probability Yes!
- Convergence of critical streams and existing QoS mechanisms (not just "best effort") on the same network Yes!

Which networks are DetNet's problem space?



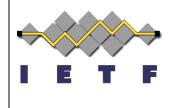
- Bridged, routed, and mixed Bridges are being handled in IEEE 802.1, so far. If the "mixed" case is to work, the IETF routed and IEEE bridged solutions must be coordinated.
- Wired, wireless, and mixed Each wireless medium is different, and all are very different from wired media. Wired/optical media are more similar to each other. A DetNet WG would concentrate on wired solutions, but be open to cooperation on wireless issues.

Mapping users' wants to existing technologies


Mapping users' wants to DetNet

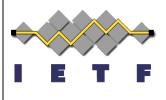
Users want: a) Guaranteed worst-case **latency** and b) very **low packet loss** rates for c) **fixedbandwidth** streams, all d) **converged** with existing QoS mechanisms.

 Well, we could start from Square One and re-invent new ways to do this.

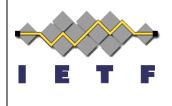

Mapping users' wants to DetNet

Users want: a) Guaranteed worst-case **latency** and b) very **low packet loss** rates for c) **fixedbandwidth** streams, all d) **converged** with existing QoS mechanisms.

 It's easier and quicker to use proven existing technologies.


Mapping users' wants to DetNet

Users want: a) Guaranteed worst-case **latency** and b) very **low packet loss** rates for c) **fixedbandwidth** streams, all d) **converged** with existing QoS mechanisms.


 So, our starting point is the advance reservation of dedicated per-hop resources.

Advance reservation of dedicated per-hop resources

- Why? Because we know this can give us:
 - A computable maximum buffer allocation per stream (or class) per hop; which means
 - Zero congestion loss; and also delivers
 - A computable guaranteed worst-case latency.

Is that enough?

- For many users, yes, reserved resources is enough.
 - This allows the network to carry much more critical traffic than a prioritized over-provisioned network can carry.
 - Simple topologies (e.g. rings) give fast enough connectivity restoration that pre-reserved failover resources will carry the application over a failure.

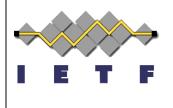
Is that enough?

- For many users, no, reserved resources is not enough.
 - Bigger, more complex networks take longer to converge after failures.
 - Sharing resources with IT means that failures (e.g. bonehead ACLs) are complex; failure detection/restoration can't depend just on routing/bridging protocols.

Seamless Redundancy

DetNet will need to support this well-known technique that completes the users' needs. Two Listeners One Talker Sequence once Final duplicate elimination Eliminate duplicates, pass Send along two paths, on a single stream maybe multicasts

Several failures can be tolerated without a single packet loss


Seamless Redundancy

- (Granted, that's a concocted example.)
- Paths are typically fixed, and are unaffected by network topology changes; they either work, or they don't.
- Listeners never miss a packet.
- **Bulk streams**: (audio/video) Many packets in flight, one stream arrives offset by *n* packets from the other stream.
- Intermittent streams: (process control)
 n == 0.

Problems for detnet wg to solve

Problems to solve

- Figure out how to configure DetNet Streams:
 - By static configuration
 - Using network controller (bridges AND routers)
 - From Talker/Listener-initiated requests (B and R)
 - To take advantage of various data-plane shapers
- Select a data encapsulation that:
 - Can traverse bridges and routers
 - Makes it easy to identify a stream
 - Sequences packets for Seamless Redundancy
 - Aggregates streams to achieve scalability