Information Model of Interface to Network Security Functions Capability Interface
draft-xia-i2nsf-capability-interface-im-03

Liang Xia Huawei
DaCheng Zhang Alibaba
Edward Lopez Fortinet
Nicolas BOUTHORS Qosmos

July 2015 Prague
I2NSF Architecture

Security Service Layer
For clients or App Gateway to express and monitor security policies for their specific flows,

Capability Layer
For Controller to specify and monitor the limited number of attributes (or Security Profiles) that are allowed by the respective vendors to the NSFs.

NSF Registration
For NSF vendors to register their available security functions and set of policies (or Service Profiles) that can be dynamically set by 3rd parties.

Vendor management system
Current Dilemma of NSF Provisioning

- A lot of security vendors with its proprietary interface (i.e., management plane protocol, information model and data model);
- Various network security capabilities/functions provided by security vendors can not be integrated and applied as a whole. More seriously, more new network security capabilities are appearing;
- NSaaS market grows very fast, which requires the automatic provision of massive NSF instances with high efficiency and flexibility.
Answer

• A standard capability interface (by I2NSF)
 - Decouple network security controller from security devices of specific vendors, and vice versa;
 - Only be oriented to the logic network security capabilities, independent with specific device model;
 - Flow-based paradigm builds a concrete basis for most common security capabilities.

Start from a limited set of NSFs (do not boil the ocean), and be patient for its self-evolvement!
Information Model for I2NSF Capability Interface

- Match values based on packet data
 Packet header - Can be standardized
 Packet payload - Provided by NSF capabilities

- Match values based on context
 Ex.: user, State, time, geo-location, etc.
 Many can (and should) be standardized, but many also from NSF capabilities

- Egress processing
 Invoke signaling
 Packet forwarding and/or transformation
 Possibility for SDN/NFV integration

- Vendor Unique Innovation, vendor specific
 e.g. IPS:<Profile>
 Profile: signature, Anti-virus, URL filtering, etc.
 Integrated and one-pass checks on the content of packets

Key goal:
- Flexible and comprehensive semantics;
- Extensible IM for containing different vendors’ security capabilities, in essence, respective difference or innovation.
Information Model Grammar Details

<Policy> ::= <policy-name> <policy-id> (<Rule> ...)
<Rule> ::= <rule-name> <rule-id> <Match> <Action>
<Match> ::= [<packet-based-match>] [<context-based-match>]
<packet-based-match> ::= [<packet-header-payload> ...] [<service> ...] [<application> ...] [<payload>]
<address-scope> ::= <route-type> (<ipv4-route> | <ipv6-route> | <mpls-route> | <mac-route> | <interface-route>)
<ipv4-route> ::= <ip-route-type> <source-ipv4-address> | <destination-ipv4-address> | <source-ipv4-address> | <destination-ipv4-address>)<ipv4-prefix> ::= <IPV4_ADDRESS> <IPV4_PREFIX_LENGTH>
<ipv6-route> ::= <ip-route-type> (<destination-ipv6-address> | <source-ipv6-address> | <destination-ipv6-address>)<ipv6-prefix> ::= <IPV6_ADDRESS> <IPV6_PREFIX_LENGTH>
<service> ::= <name> <id> <protocol> [<protocol-num>] [<src-port>] [<dest-port>]
<protocol> ::= <TCP> | <UDP> | <ICMP> | <ICMPv6> | <IP>
<application> ::= <name> <id> <category> <subcategory>
<data-transmission-model> ::= <risk-level> <signature>
<category> ::= <business-system> | <Entertainment> | <internet> | <network>
<subcategory> ::= <Finance> | <Email> | <Game> | <media-sharing> | <social-network> | <web-posting> | <proxy> | ...
<data-transmission-model> ::= <client-server> | <browser-based> | <network>
<risk-level> ::= <Exploitable> | <Productivity-loss> | <Evasive> | <Data-loss>
<brandwidth-consuming> | <Tunneling>
<signature> ::= <server-address> <protocol> <dest-port-num> <flow-direction>
<object> ::= <keyword>
<flow-direction> ::= <request> | <response> | <bidirection>
<object> ::= <packet> | <flow>
<context-based-match> ::= [<user-group> ...] [<session-state>] [<schedule >] [<region-group>]
<user-group> ::= <user>...
<user> ::= (<login-name> <group-name> <parent-group> <password> <expired-date> <allow-multi-account-login> <address-binding >) | <tenant> | <VN-id>
<session-state> ::= <new> | <established> | <related> | <invalid> | <untraced>
<schedule> ::= <name> <type> <start-time> <end-time> <weekly-validity-time>
<type> ::= <once> | <periodic>
<action> ::= <basic-action> [<advanced-action>]
<basic-action> ::= <pass> | <deny> | <mirror> | <call-function> | <encapsulation>
<advanced-action> ::= [<profile-antivirus>] [<profile-IPS>] [<profile-url-filtering>]
Yang Data Model Specification

---security-policies
 ---rw policy-set* [policy-name]
 ---rw policy-name string
 ---rw policy-id uint16
 ---rw security-rules
 ---rw rule-set* [rule-name]
 ---rw rule-name string
 ---rw rule-id uint16
 ---rw Match
 | ---rw packet-based-match
 | | ---rw user* [login-name]
 | | | ---rw login-name string
 | | | ---rw group-name string
 | | | ---rw parent-group string
 | | | ---rw password string
 | | | ---rw expired-date date-and-time
 | | | ---rw allow-multi-account-login boolean
 | | | ---rw address-binding boolean
 | | | ---rw tenant? uint32
 | | | ---rw VNID? uint32
 | | ---rw address*
 | | | ---rw route-type route-type-def
 | | | ---rw value
 | | | | ---rw (route-type)?
 | | | | | ---: [IPv4]
 | | | | | | ---: ...
 | | | | | | ---: [IPv6]
 | | | | | | | ---: ...
 | | | | | | ---: [mpls-route]
 | | | | | | | ---: ...
 | | | | | | ---: [mac-route]
 | | | | | | | ---: ...
 | | | | | | ---: [interface-route]
 | | | | | | | ---: ...
 | | ---rw layer3-header-payload*
Next Step

• Solicit Comments

• Maybe remove the Yang data model part

• Keep on improvement, including: more content about security profiles, improving information model structure and grammar, examples, etc
Thanks!

Dacheng Zhang
Liang Xia (Frank)