Communications Security for Cooperative Intelligent Transportation Systems (C-ITS)

William Whyte
Chief Scientist
Security Innovation

May 2015
Baseline questions

• What is connected vehicle communications security?
• How is it different from other communications security?
• What are specific mechanisms used in Cooperative Intelligent Transportation Systems (C-ITS)?
• Where are security services applied in the protocol stack?
Security challenges

• All the usual ones
 - Confidentiality, integrity, authenticity, authorization, (sometimes) non-repudiation
 - Security and cryptography requirements depend on application setting

• Plus
 - Privacy: don’t want tracking / traffic analysis to be easy
 - Channel congestion: 3-6Mbps channels
 - Constrained devices due to cost of automotive quality equipment – affects connectivity, hardware security, …

• Plus!
 - Security management: distributing security management information to devices that have intermittent Internet connectivity
Links with IETF projects

• IP over multihop in VANET
 – BOF efforts in ITS (its wg)

• New certificate format
 – Proposal to use in TLS (tls wg)

• Automated certificate issuance
 – Close in spirit to acme wg

• Certificate management
 – Similar topics to those addressed by PKIX

• … links are tenuous but C-ITS would benefit from using technology that’s already been invented
Outline

• Trust model
 − IEEE 1609.2 / ETSI TS 103 097 certificates
 − Broadcast single-hop messages
• Privacy: protections against an eavesdropper who is not in all places at once
• Advertised services
 − Simple service discovery mechanism, risk of unauthorized use of spectrum
• Geonetworking
 − Want to allow VANETs, i.e. vehicles can forward application messages without having to understand the application payload
 − Risk: channel flooding
Trust Model: IEEE 1609.2 / ETSI TS 103 097

- Application Identifiers, Service Specific Permissions, and CA responsibilities
Threat model for collision avoidance

• False positives
 - Unlikely to cause physical harm
 - “Something bad round the corner! swerve now!”
 - But invalid alerts reduce driver faith in system
 - Appropriate security approach: Authentication + misbehavior detection

• False negatives
 - People may come to rely on warnings
 - Need to warn about denial of service once system is widely deployed
Trust model

- IEEE 1609.2 / ETSI TS 103 097
 - Secure messages and certificates, targeted at MANET setting
- Signed PDUs are authorized by certificates
 - PSID: Identifies “application”
 - Service Specific Permissions (SSP): permissions within application
- CA ensures that sender is entitled to these permissions
 - Implications for hardware and software security, data quality
- Receiver checks PDU is consistent with permissions
Trust model example and implementation

• Cooperative Awareness Message (EU): “Here I am”
 - Identified by ITS-AID 0x24
• Default (NULL) SSP: cert owner can send “here I am” message only
• SSP 00 00 40: cert owner can claim to be emergency vehicle, request right of way
• Receiver of a CAM checks that CAM payload is consistent with both CAM PSID and sender-specific SSP
 - This must be carried out by CAM processing logic
 - Cannot be carried out by the security services
Performance

• Signed messages
 - ECDSA over 256-bit NIST or Brainpool curves
 - IEEE permits “implicit” certificates (no explicit signatures, smaller certs, faster verify than two ECDSA verifications)
 - ETSI uses only explicit certificates

• Up to 600 incoming messages per second
 - Impractical to verify all in software even on full-featured PC platforms
 - Option 1: Use hardware acceleration (EU)
 - Option 2: Prioritize verifying messages that will result in an action (US)

• Butterfly keys (US): one-time request allows CA to generate arbitrary number of distinct, unlinkable device certificates
 - CA pregenerates certs, device downloads them at its leisure
 - Multiple certs supports privacy, pregeneration reduces peak load
 - (CRYPTO! Takes advantage of properties of discrete log)
Privacy

• A listener who records all Basic Safety Messages (BSMs) can track a vehicle
 - By design!
• System design provides privacy protection against a “mid-size” attacker
 - Multiple certificates for an application (20+ per week)
 - Change all identifiers in the stack simultaneously
• Need policy measures to prevent automatic speeding tickets etc
Privacy against CA

• A CA could track if it knows which certificates go to which device
 - ... so the (US) system “blinds” the CA
• Devices can be revoked and their certificates linked
 - Under specific circumstances
 - Requires cooperation between different organizations
 - (CRYPTO! Identifiers generated by XORing independent hash chains)
 - No information revealed about previous movement
Geonetworking / multi-hop / advertised services

- Security to control congestion
Geonetworking within VANET

- ETSI model
 - All packets sent over geonetworking are signed at the geonetworking layer
 - Indicates that the sender has permissions to ask that a packet is forwarded
 - Packets are verified before forwarding
 - Prevents unauthorized requests for forwarding, reduces congestion

- Packet size optimization: application messages signed at the geonetworking layer do not need to also be signed at the application layer
 - So long as they are not forwarded over a different medium
Architectural comparison: OBE
Service advertisements

- Indicate:
 - Service (identified by PSID) is available on a particular service channel
 - Tolling, Point of Interest Notification, Electric Vehicle Charging...
 - Particular access parameters (Enhanced Distributed Channel Access (EDCA) parameter set from IEEE 802.11e) to be used to access

- Possible threats:
 - Service advertised, spoof service provided
 - Out of scope of security for advertisements
 - Advertised bad service causes QoS issues for valid service
 - E.g. tolling on safety channel
 - To be addressed by policy
 - Response to service compromises privacy
 - Users are assumed to give consent to service by opting in
If a private user interacts with separate services A and B, services A and B should not be able to tell it was the same user.
- A transaction with a user should not be linkable with the user’s vehicle
- An eavesdropper should not be able to use a device’s collection of applications to identify it

Possible solution:
- Different virtual device for each service?

Early stage research
Conclusions and future challenges

• Security systems designed to meet the requirements of day-1 applications
 - Work within channel capacity and processing constraints
 - Support different trust “levels”, revocation, privacy against reasonable attackers

• Future challenges
 - Integrate into general IoT security framework
 - Manage congestion in an adversarial setting
 - Definition and harmonization of policy re which applications may use which channels
 - Support more sophisticated communications models
 - Short signatures that remain secure if a quantum computer is invented
Thank you!

William Whyte

wwhyte@securityinnovation.com