

Non-Renegable Selective
Acknowledgments for TCP

Fan Yang, Paul D. Amer
CIS, University of Delaware, USA

Si Quoc Viet Trang, Emmanuel Lochin
ISAE, Université de Toulouse

Background

● TCP is designed to tolerate reneging
– The possibility of reneging forces a transport sender to

maintain copies of SACKed data in the send buffer until
they are cumulatively acked

● This design has been challenged since :
– reneging rarely occurs in practice

● N. Ekiz, Transport Layer Reneging, PhD Univ. Delaware, 2012

– even when reneging does occur, it alone generally does
not help the operating system resume normal operation
when the system is starving for memory

TCP/SACK

● TCP send buffer gives a window of contiguous bytes to
transmit

● The lower edge of the window is defined by the
received highest cumack number

● The upper edge is defined to be the highest cumack
number plus the number of bytes in the advertised
receive window

● Under these two circumstances, there is no advantage
to having a receive window larger than the send
window

Normal TCP data transfer

Sender buffer == 4 Receiver buffer == 7

TCP NR-SACK
(Non-Renegable Selective Acknowledgments)

NR-SACK implementations

● Severals studies show that NR-SACK for SCTP and
MPTCP not only reduce sender’s memory
requirements but also improve the end-to-end
throughput under certain conditions

● QUIC implements an NR-SACK-like mechanism
● So … does TCP still need NR-SACK ?
● Does freeing received out-of-order PDUs from the

send buffer by using NR-SACKs can improve end-
to-end performance ?

… and the answers are

● This improvement results when send buffer
blocking occurs in TCP

● TCP data transfers with NR- SACK never perform
worse than those without NR-SACK

● NR-SACKs can improve end-to-end throughput
when send buffer blocking occurs

● Under certain circumstances, we observe
throughput increasing by using TCP NR-SACK as
much as 15%

Some results

● NR-SACK implemented in GNU/Linux kernel

– Quite tricky to allow a possibly non-contiguous set of bytes

● In GNU/Linux the default upper limit of the TCP send buffer size is 905KB

● A smaller send buffer, which needs not to keep copies of SACKed data, can
keep a larger receive window busy (e.g., default send and receive buffer
sizes for Linux 2.6.31 are 16,384 and 87,380 bytes, respectively)

Thanks for your attention

● Implementation of NR-SACK for TCP realized
by Fan Yang from University of Delaware

 yangfan@udel.edu

mailto:yangfan@udel.edu

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9

