Non-Renegable Selective
Acknowledgments for TCP

Fan Yang, Paul D. Amer
CIS, University of Delaware, USA

Si Quoc Viet Trang, Emmanuel Lochin
ISAE, Université de Toulouse

Background

* TCP is designed to tolerate reneging

- The possibility of reneging forces a transport sender to
maintain copies of SACKed data in the send buffer until

they are cumulatively acked
* This design has been challenged since:

- reneging rarely occurs in practice
* N. Ekiz, Transport Layer Reneging, PhD Univ. Delaware, 2012
- even when reneging does occur, it alone generally does

not help the operating system resume normal operation
when the system is starving for memory

TCP/SACK

* TCP send buffer gives a window of contiguous bytes to
transmit

* The lower edge of the window is defined by the
received highest cumack number

 The upper edge is defined to be the highest cumack
number plus the number of bytes in the advertised
receive window

* Under these two circumstances, there is no advantage
to having a receive window larger than the send
window

Normal TCP data transfer

100% K}
100%

100% KIIEEN

100% eI

100% i

g s
5

75%
50%

H

0

25%

P ——

100%

Sender buffer == 4

4
5

8

!

)

send buffer
blocking

m—

I

ACK 1

ACK 1, SACK 3-3
ACK 1, SACK 34

ACK 1, SACK 3-5

ACK 5

ACK 6

.

11118

Receiver buffer == 7

TCP NR-SACK

(Non-Renegable Selective Acknowledgments)

100%
100%
100% ACK 1, NR-SACK 3.3

T
100% /
ACK 1, NR-SACK 34
—$
__’
/§

.

ACK 1

100% ACK 1, NR-SACK 35
100% ACK 1, NR-SACK 3-6
100%
o o

100% AN
100% A
(b’ 8 9 10 11

ACK 1, NR-SACK 3-7

ACK7

ACK 8

ACK 9

ACK 10

w

—4i

o w

=t
BE80

1

NR-SACK implementations

» Severals studies show that NR-SACK for SCTP and
MPTCP not only reduce sender’'s memory
requirements but also improve the end-to-end
throughput under certain conditions

* QUIC implements an NR-SACK-like mechanism
e So... does TCP still need NR-SACK ?

* Does freeing received out-of-order PDUs from the
send buffer by using NR-SACKSs can improve end-
to-end performance ?

....and the answers are

* This improvement results when send buffer
blocking occursin TCP

* TCP data transfers with NR- SACK never perform
worse than those without NR-SACK

 NR-SACKSs can improve end-to-end throughput
when send buffer blocking occurs

 Under certain circumstances, we observe

throughput increasing by using TCP NR-SACK as
much as 15%

Some results

NR-SACK implemented in GNU/Linux kernel
— Quite tricky to allow a possibly non-contiguous set of bytes
In GNU/Linux the default upper limit of the TCP send buffer size is 905KB

A smaller send buffer, which needs not to keep copies of SACKed data, can
keep a larger receive window busy (e.q., default send and receive buffer
sizes for Linux 2.6.31 are 16,384 and 87,380 bytes, respectively)

18
1¢ 15.3
. ad iy
€ 14
£ 12 f
910 o 88
[8 = f
= 54 e 6 5.4 e 5.7
5 a = ;-
- - B Z .o B 3 B B
= = =4 £ 15"~ ,- 23 ','_:: B 2.1 b2
110 003 0 @ 0 0 0 0 m 0 B B o o | B o |
" i & g G i gl kS
'..{:J]]] Ly o] {:b ":::'.l -'u."-: ‘_F;".l _D:'l _::-. i::.. _.f.l e 'Eh ':P:.l ':p.- -_'_‘:"‘EI]] {:é.l]] '::& '5;".1 'F',".l
'E;E‘:I-:' 'ﬂﬁ:ﬁ%ﬁ;‘-ﬁrﬂ‘:ﬁ: . "'"# "-'# "’-'i:s& an._ﬁ) "F.a' xﬁ"!:'t}q. :1|i'1hl:f:-‘-cl"-'I "‘I::'Q "'“':F "'"'53 o i -».,"-:F::u-.,'ﬁ:‘t:;-:.:‘-" lhﬁ: hﬂ!:ﬁa "“'-':5':' t’-':St
7 F A AT GF &7 de ke’ A NP O A PGP T e ' 4 ' ' & e de
O S S e LU S G o o’ o P
Y T PR VF S TFF PRSP TFF T FF PP
PP S TG AR PR Tghgh d o T e

Thanks for your attention

* Implementation of NR-SACK for TCP realized
by Fan Yang from University of Delaware

yangfan@udel.edu

mailto:yangfan@udel.edu

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9

