Model Based Metrics

IPPM Working Group IETF 93, July 2015

Matt Mathis <mattmathis@google.com> Al Morton <acmorton@att.com>

Outline

- Document status
 - \circ $\,$ Heavy revision after 1st WGLC $\,$
- Why Model Based Metrics are important
- Next steps

Document status

- WGLC Reviews:
 - Ruediger Geib
 - Mirja Kühlewind
- Clearly major problems
 - The big picture was misunderstood
 - Lots of feedback about inconsistent and non standard terminology

Document changes: -04 to -05 to -06

- Interim -05 draft submitted June 13th, -06 at Draft Cutoff
- Document restructuring
 - Split the introduction
 - New introduction
 - High Level view in 4 paragraphs
 - New Overview
 - One paragraph per concept preview of the entire document
 - New "system" diagram
 - \circ $\;$ Two minor subsections were reordered
- Major terminology overhaul
 - Aligned with other IPPM documents
 - Better self consistency
- See the document change log for more details
 - \circ In the intro

High level view

- MBM is a framework
 - Maps predetermined transport (TCP) performance targets
 - Into a Targeted Diagnostics Suite of IP tests
- The Targeted Diagnostic Suite (TDS)
 - Pass fail/tests of IP performance
 - (Independent) tests of multiple packet delivery properties
 - Sufficient IP capacity (data rate)
 - Sufficient queue space to smooth and deliver bursts
 - Sufficiently low background packet loss ratio
 - etc
 - Failing **any** IP test means that some users **will fail** to attain the target
- This solves problems caused by TCP "equilibrium behavior"
 - Every detail affects every measured parameter
 - Even things that are explicitly out of scope, such as MP location
 - This is the unsolved problem in BTC Framework [RFC 3148]

The Mode Based Metrics framework

Elements of the Framework

- Target Transport Performance what the user or application wants
 - Target data rate over the complete path
 - Target RTT and Target MTU are just as important
 - They determine how hard TCP and the network have to work
- Mathematical Models are used to calculate:
 - Traffic parameters (rates, burst sizes, etc)
 - Statistical criteria (bounds on packet loss ratio)
- Targeted Diagnostic Suite consisting of multiple:
 - IP diagnostic tests
 - Each measure one (or few) IP properties
 - Many based on existing IPPM metrics
 - With the addition of traffic controls and delivery evaluation

Building the individual IP diagnostic tests

- Traffic generation mimics TCP over a long path (bursts etc)
 - A longer Target RTT implies larger bursts
 - Subpath properties are prevented from affecting traffic patterns
 - May be built on top of existing IPPM metrics and tools
- Estimate and verify packet loss ratio
 - A longer target RTT requires a lower (better) packet loss ratio
 - Use Sequential Probability Ratio Test (SPRT)
 - Count delivered and lost packets
 - Stop when either hypothesis is confirmed or at a maximum count
- Outcomes
 - Pass or Fail
 - Inconclusive
 - Traffic generation was not accurate
 - Neither result is statistically confirmed
 - Something else interfered with the test

IP Properties Required to deliver Target TCP performance

- The IP capacity is above the Target Data Rate by sufficient margin
 - Capacity for all TCP/IP overhead, including rate hunting
- The observed packet loss ratio is low enough
 - \circ $\,$ Background losses caused by other cross traffic
- Sufficient buffering to absorb slowstart bursts
 - Full target_window_size at twice the bottleneck rate
- Sufficient buffering to absorb sender interface rate bursts
 - Partial target_window_size at full server interface rate
- Onset of packet loss has to be appropriate (Engineering)
 This implies something AQM like
- Bound on how the data and ACKs interact (Engineering)
 - \circ $\,$ Channel arbitration must honor protocol self clocks

TCP Performance Guarantees

- If any subpath (link, device or interface, etc) fails any IP diagnostic test in a TDS, then some users will not be able to attain the target performance through that subpath.
- Implied goal: no failing tests for any subpaths
- There is the potential for corner cases (false results)
 - Validation procedure to help refine the TDS
 - The metrics are naturally slightly conservative
 - A fully passing subpath is likely to do better than the Target for some users

A few words about TCP & Standard Congestion control

- Keep pushing faster, until the network drops packets
- TCP and the network find a balance between
 - rate or window (determined by TCP)
 - loss and queuing delay (determined by the network)
- This is classic example of equilibrium behavior
 - It has loops in its dependency graph
 - Some action are non-linear
 - Therefor all parameters have non-linear sensitivity to everything
- Exported Parameters (measurements) have no predictive value
 - Thwarts "A-Frame" in RFC 2330
 - And Bulk Transport Capacity RFC 3148

Next steps

• WGLC, take 2