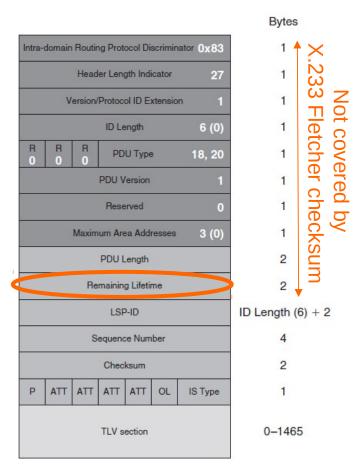
IS-IS LSP lifetime corruption Problem Statement

draft-decraene-isis-lsp-lifetime-problem-statement-00

Bruno Decraene


Orange

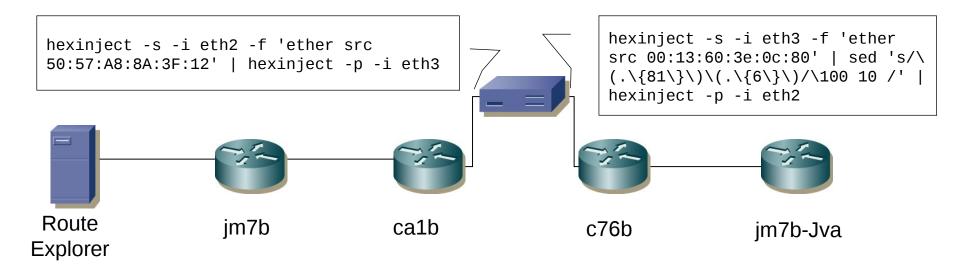
Christof Schmitz

Orange

LSP lifetime is not protected from corruption

- LSP lifetime is not protected
 - not by the Fletcher checksum
 - ISO spec
 - not by cryptographic checksum
 - TLV 10 defined in RFC 5304
- Hence LSP lifetime may be corrupted
 - error during transmission
 - line, line cards, switch matrix, RP
 - deliberate modification
 - by an attacker

Consequences (1): lifetime set to zero


- Case 1: no cryptographic authentication
 - LSP accepted and processed as if lifetime has expired
 - Replace any non-expired version of the same LSP in the LSPDB
 - Purge flooded network wide \rightarrow impact on topology/network
 - Re-origination (sequence number++) \rightarrow impact on topology/network
 - If the corruption is systematic, the process cycles forever.
- Case 2: cryptographic authentication used
 - RFC 5304 & 6233 covered this issue by restricting the TLV code allowed in a purge.
 - LSP with zero lifetime and "regular" TLV are ignored
- Summary: cryptographic authentication is required
 - including for error detection i.e. no attackers inside the infrastructure
 - we are good

Consequences (2): lifetime set to non-zero

- LSP with corrupted lifetime is accepted as valid
 - Cryptographic authentication does not provide any additional protection.
- If the lifetime is corrupted to a (very) small value, the effect is virtually equivalent to a purge.
 - Cf previous slide
- RFC 5304 (crypto) is not effective
 - in "prevent[ing] a hostile system from receiving an LSP, setting the Remaining Lifetime field to [a small value], and flooding it, thereby initiating a purge without knowing the authentication password"
- Summary: Houston, we've had a problem here.

Lab testing

- IS-IS MD5 authentication enabled on LSPs.
- Corrupting all ethernet packets from c76b to ca1b
 - setting lifetime to 0x10 (bytes 28 & 29)
 - we used the hexinject tool
- 1 interface flap \rightarrow 1 LSP corrupted
- \rightarrow generates 103 LSPs in less than 30mn.
 - In a very small and simple network topology.

Consequences (3): network wide

 If the corruption is systematic on a given link, all LSPs flooded through that link are affected, creating flooding storm for multiple LSPs with severe impact in the network.

Next steps

- IGP MUST work.
 - All services and many protocols relies on it.
- Can be seen as a security issue
 - not previously documented (RFC 5304, draft-ietf-karp-isisanalysis)
- Calling for a protocol extension
 - Preferably, incrementally deployable with incremental benefit.

Comments welcomed

Thank you