
application layer api
ietf://mif/93

v2

lots of question marks, lots of ellipses
:-)

PvD
● RFC7556#section-2

○ “A consistent set of network configuration information.”

● includes:
○ participating interfaces
○ addresses
○ routes

■ default routes, of course
■ but also RIO -type information

○ DNS servers and search path
○ HTTP proxy
○ yet to be specified: metering, medium, captive portal URL, …

● not learned atomically, not static

https://tools.ietf.org/html/rfc7556#section-2
https://tools.ietf.org/html/rfc7556#section-2

what things do apps need?
● PvD configuration information

○ get config data, get notified of updates

● PvD selection
○ granularity: system default + per process / thread / file descriptor / ...

● socket-level control
○ control routing and address selection
○ automatic PvD “tagging” of incoming traffic not already classified

● DNS resolution:
○ which DNS servers and search path to use
○ correct routing to those DNS servers

■ don’t want to query the right DNS server via the wrong network

● useful errors (a la ENONET, …)

source address and routing selection
● if a PvD has been specified:

○ it is RECOMMENDED that source address selection be restricted to PvD addresses
■ update RFC6274#section-4

○ it is important to return errors
■ might have two PvDs active: one IPv4-only and one IPv6-only
■ ENONET, EPROTONOSUPPORT, EADDRNOTAVAIL, EHOSTUNREACH, ...

● destination reachability:
○ userspace libraries often use connect() tricks to obtain source addresses for sorting
○ this MUST use the routing configuration of the desired PvD

● getaddrinfo() and AI_ADDRCONFIG
○ RFC3493#section-6.1 “...shall be returned only if an IPv4/v6 address is configured on the local

system...” → “... within the requested PvD”

https://tools.ietf.org/html/rfc6724#section-4
https://tools.ietf.org/html/rfc3493#section-6.1

new things to define
● get PvD configuration data

○ should be extensible
■ struct with #ifdef extra members?
■ separate query for each configuration element of interest (a la getsockopt())?

○ notification of configuration changes
○ figure out how to express PvD ↔ interface/scope_id relationship

● set/get process default PvD, thread default PvD
● a simple programmatic way to reference a specific PvD in these calls

○ e.g.: typedef uint64_t pvd_reference_t
○ separate attaches to the same PvD may be assigned different pvd_ref_t values
○ may help for distinguishing implicit PvDs
○ PVD_UNSPECIFIED

some sockets API considerations
● basically the strong host model

○ except that PvD ↔ interfaces is m:n
○ PvD IDs could be thought of as site-local scopes

● requests for a PvD not currently configured should return ENONET
○ other useful errors need to be returned throughout
○ some of this may want to be relaxed for privileged users

● per packet PvD selection? … maybe, maybe not
○ once a source address has been selected, using it to send traffic via a different PvD is

essentially best effort / subject to system-specific policy

sockets API
● setsockopt() / getsockopt()

○ IP_RECVPVD / IPV6_RECVPVD
■ recvmsg() should include indication of PVD to which the packet arrived

○ IP_PVD / IPV6_PVD
■ source address selection and applicable routing table is restricted to the specified PvD

■ if a source address has already been selected from one PvD, transmitting via another
PvD is NOT RECOMMENDED (but of course possible)

○ PVD_UNSPECIFIED

■ no PvD explicitly requested
■ also used to clear a process or thread default and revert to system default

○ for PF_INET / PF_INET6 sockets

sockets API
● socket()

○ if a process-default or thread-default PvD has been set, the returned file descriptor must be
“bound” to the PvD

■ i.e. as if setsockopt(SOL_IPV6, IPV6_PVD, …) had been called
○ otherwise, the file descriptor defaults to PVD_UNSPECIFIED

● bind()

○ if a PvD is specified && address is unspecified, it is RECOMMENDED source address
selection be restricted to this PVD

○ else if a PvD is specified && address is not unspecified, EADDRNOTAVAIL might be returned
○ else best effort / system-specific policies apply

sockets API
● listen()

○ if the file descriptor is already bound to a PvD, only traffic to one of the PvD’s addresses
should cause the file descriptor to become readable

○ other traffic should receive an ICMP error

● accept()
○ returned file descriptors should be bound to the PvD of:

■ the listening socket, if it was not bound to PVD_UNSPECIFIED
■ the PvD of the destination address on the system

● connect()
○ bind() discussion applies for source address selection
○ EHOSTUNREACH / ENETUNREACH might be returned

sockets API
● sendmsg() / recvmsg() cmsg semantics

○ setsockopt() / getsockopt() options apply
■ IP_RECVPVD / IPV6_RECVPV6
■ IP_PVD / IPV6_PVD

○ source address selection discussion applies for IP_PVD / IPV6_PVD
■ some combinations just may not work
■ some may require privileges to even attempt

DNS resolution
● can be implemented with per-PvD DNS server and search path state
● use sockets API changes for reaching specified nameservers
● maybe extend getaddrinfo(..., hints, ...)

○ struct addrinfo {

 int ai_flags;

 …

#ifdef HAVE_PVD_API

 pvd_reference_t ai_pvd;

#endif

};

● what about getnameinfo(), res_query(), and getdnsapi ?

https://getdnsapi.net

next steps?
● discussion

○ new functions and data types
○ how to deal with VPNs

■ should apps be required to know about them?
■ or does a VPN just affect PVD_UNSPECIFIED traffic?

○ accumulation of PvD configuration data is not atomic
■ signaling of PvD config data changes

○ where should policy / privileges influence behaviour?
○ many system-side things deliberately not discussed here

● fold feedback into draft-liu-mif-socket-api
● continue discussion on the list

https://tools.ietf.org/html/draft-liu-mif-socket-api

