Pre-MODERN prototype

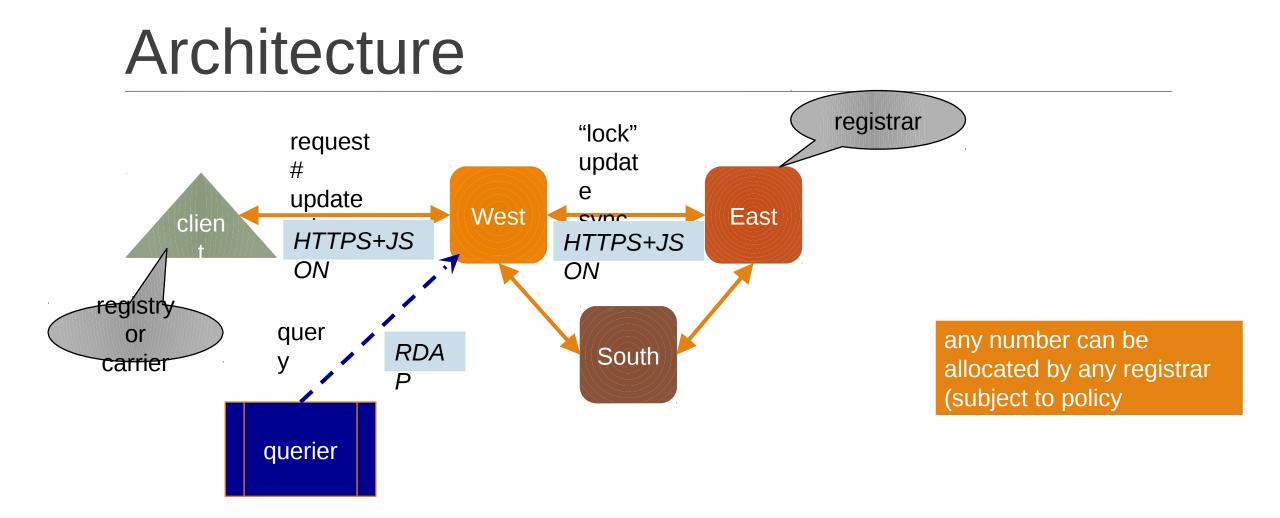
HENNING SCHULZRINNE

JULY 20, 2015

Overview

Overall objectives & architecture

- create toy version of fully functioning distributed number management system
- try out existing protocols for sub-functions
- key functions: allocation, porting and access to properties


Paxos for distributed agreement

- ensure that each number (block) is only allocated once
- no hard limit on scale, but likely \leq 20 systems

Out of scope:

- number assignment policies (who, what, when, for how long, for how many Kč)
- scaling \rightarrow each registrar scales as needed
- legacy and ENUM interfaces

e164.space prototype

Authorization model

Each number has an OCN (\rightarrow carrier-related contact information)

- Each OCN has number administrators (human or API)
 - can change all information about number (routing, properties, ...)

Consumers have PINs for access and porting

- read access to "whois" properties
- provide PIN to gaining provider to allow changing OCN

Operations needed

Allocate new number from available pool

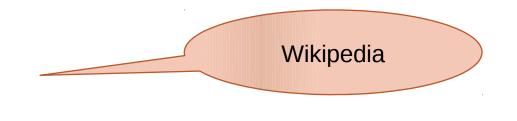
- first consensus
- then gossip result (replicate or forwarding)

Port a number (number \rightarrow new OCN)

Synchronize two registrars \rightarrow allow new registrar to join

- also handles case of longer-term network disruption
- "give me all updates after time T1"

Paxos (& similar dist. consensus) assumptions


Processors

- ... operate at arbitrary speed.
- ... may experience failures.
- ... with stable storage may re-join the protocol after failures (following a crash-recovery failure model).
- ... do not collude, lie, or otherwise attempt to subvert the protocol (non-byzantine)

Network

- Processors can send messages to any other processor.
- Messages are sent asynchronously and may take arbitrarily long to deliver.
- Messages may be lost, reordered, or duplicated.
- Messages are delivered without corruption.

A consensus algorithm can make progress using 2F+1 processors despite the simultaneous failure of any F processors.

Paxos & variants

In order to guarantee safety, Paxos defines three safety properties and ensures they are always held, regardless of the pattern of failures:

Non-triviality

- Only proposed values can be learned.

Safety

- At most one value can be learned (i.e., two different learners cannot learn different values).

Liveness(C;L)

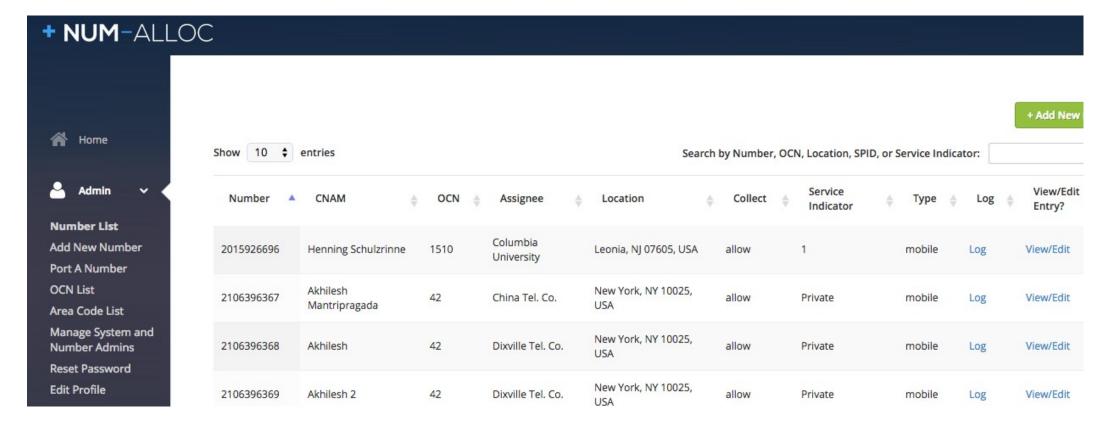
- If value C has been proposed, then eventually learner L will learn some value (if sufficient processes remain non-faulty).

Paxos for distributed consensus

Collision (mainly) a problem during allocation of numbers

- assume that number holder will coordinate update operations
- but could apply distributed consensus to updates as well (\rightarrow overhead)

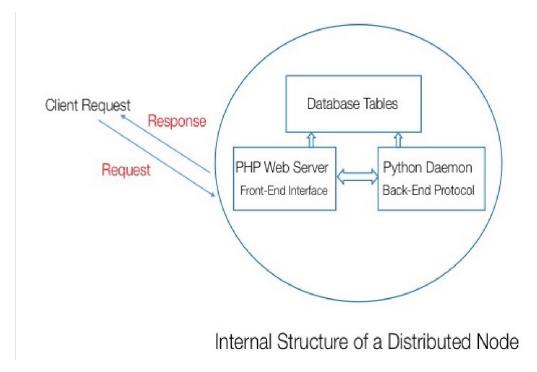
Any registrar can allocate any available number


Rely on quorum = N/2 + 1

- N (registrar count) is assumed to be known and relatively static
- does not need to track minute-by-minute liveness
- uses heartbeat

Paxos

- Proposer tries to acquire leadership window for time period T (liveness window) → PREPARE
- 2. Other servers receive PREPARE and whether to grant leadership or not grant if no other node has requested leadership reply with PROMISE
- 3. If #(PROMISE) > quorum, proposer becomes leader for liveness window
- 4. Proposer sends ACCEPT to all other nodes
- 5. Other nodes respond with ACCEPTED [may be unnecessary for our case]


Prototype (e164.space)

Prototype

Home	Edit De	tails
Admin/Associate	Alloted Number	2015926696
	CNAM	Henning Schulzrinne
	OCN Information	1510
	Assignee Information	Columbia University
	Certificate	Certificate Link Choose File No file chosen
	Zip Code	07605
	Location	Leonia, NJ 07605, USA
	Operating Telephone Company (OTC)	1234

Implementation

Implementation

Front end

- HTML 5
- CSS 3
- JavaScript/Jquery
- Twitter Bootstrap CSS

Back end

- PHP with Laravel frameworkf
- Python

Database

- MySQL

Development environment

- Version control: GitHub
- IDE: PHP Storm
- Hosting: Digital Ocean
- Testing: Codeception

External APIs

- Google Maps, Mandrill, Twilio