
Pre-MODERN
prototype
HENNING SCHULZRINNE

JULY 20, 2015

Overview
 Overall objectives & architecture

– create toy version of fully functioning distributed number management system
– try out existing protocols for sub-functions
– key functions: allocation, porting and access to properties

 Paxos for distributed agreement
– ensure that each number (block) is only allocated once
– no hard limit on scale, but likely ≤ 20 systems

 Out of scope:
– number assignment policies (who, what, when, for how long, for how many Kč)
– scaling → each registrar scales as needed
– legacy and ENUM interfaces

 e164.space prototype

Architecture

West East

South

clien
t

querier

request
#
update
release

“lock”
updat
e
sync

any number can be
allocated by any registrar
(subject to policy
constraints)

quer
y RDA

P

HTTPS+JS
ON

HTTPS+JS
ON

registrar

registry
or

carrier

Authorization model
 Each number has an OCN (→ carrier-related contact information)

– Each OCN has number administrators (human or API)
● can change all information about number (routing, properties, …)

 Consumers have PINs for access and porting
– read access to “whois” properties
– provide PIN to gaining provider to allow changing OCN

Operations needed
 Allocate new number from available pool

– first consensus
– then gossip result (replicate or forwarding)

 Port a number (number → new OCN)

 Synchronize two registrars → allow new registrar to join
– also handles case of longer-term network disruption
– “give me all updates after time T1”

Paxos (& similar dist. consensus)
assumptions

 Processors
– … operate at arbitrary speed.
– … may experience failures.
– … with stable storage may re-join the protocol after failures (following a crash-recovery

failure model).
– … do not collude, lie, or otherwise attempt to subvert the protocol (non-byzantine)

 Network
– Processors can send messages to any other processor.
– Messages are sent asynchronously and may take arbitrarily long to deliver.
– Messages may be lost, reordered, or duplicated.
– Messages are delivered without corruption.

 A consensus algorithm can make progress using 2F+1 processors despite the
simultaneous failure of any F processors.

3/26/15 IETF MODERN 6

Paxos & variants
 In order to guarantee safety, Paxos defines three safety properties and ensures they are
always held, regardless of the pattern of failures:

 Non-triviality
– Only proposed values can be learned.

 Safety
– At most one value can be learned (i.e., two different learners cannot learn different values).

 Liveness(C;L)
– If value C has been proposed, then eventually learner L will learn some value (if sufficient

processes remain non-faulty).

3/26/15 IETF MODERN 7

Wikipedia

Paxos for distributed consensus
 Collision (mainly) a problem during allocation of numbers

– assume that number holder will coordinate update operations
– but could apply distributed consensus to updates as well (→ overhead)

 Any registrar can allocate any available number

 Rely on quorum = N/2 + 1
– N (registrar count) is assumed to be known and relatively static
– does not need to track minute-by-minute liveness
– uses heartbeat

Paxos
1. Proposer tries to acquire leadership window for time period T (liveness window) →

PREPARE

2. Other servers receive PREPARE and whether to grant leadership or not
grant if no other node has requested leadership
reply with PROMISE

3. If #(PROMISE) > quorum, proposer becomes leader for liveness window

4. Proposer sends ACCEPT to all other nodes

5. Other nodes respond with ACCEPTED [may be unnecessary for our case]

Prototype (e164.space)

Prototype

Implementation

Implementation
 Front end

– HTML 5
– CSS 3
– JavaScript/Jquery
– Twitter Bootstrap CSS

 Back end
– PHP with Laravel frameworkf
– Python

 Database
– MySQL

 Development environment
– Version control: GitHub
– IDE: PHP Storm
– Hosting: Digital Ocean
– Testing: Codeception

 External APIs
– Google Maps, Mandrill, Twilio

	Slide 1
	Overview
	Architecture
	Authorization model
	Operations needed
	Paxos (& similar dist. consensus) assumptions
	Paxos & variants
	Paxos for distributed consensus
	Paxos
	Prototype (e164.space)
	Prototype
	Implementation
	Implementation

