Video Codec Requirements and Evaluation Methodology

draft-filippov-netvc-requirements-01

Alexey Filippov, Huawei Technologies
Contents

• An overview of applications
• Requirements
• Evaluation methodology
• Conclusions
Applications

- Internet Protocol Television (IPTV)
- Video conferencing
- Video sharing
- Screencasting
- Game streaming
- Video monitoring / surveillance
Internet Protocol Television (IPTV)

• **Basic requirements:**
 - Random access to pictures
 - Random Access Period (RAP) should be kept small enough (approximately, 1-15 seconds);
 - Temporal (frame-rate) scalability;
 - Error robustness

• **Optional requirements:**
 - resolution and quality (SNR) scalability
Internet Protocol Television (IPTV)

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Frame-rate, fps</th>
<th>Picture access mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>2160p (4K), 3840x2160</td>
<td>60</td>
<td>RA</td>
</tr>
<tr>
<td>1080p, 1920x1080</td>
<td>24, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>1080i, 1920x1080</td>
<td>30 (60 fields per second)</td>
<td>RA</td>
</tr>
<tr>
<td>720p, 1280x720</td>
<td>50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>576p (EDTV), 720x576</td>
<td>25, 50</td>
<td>RA</td>
</tr>
<tr>
<td>576i (SDTV), 720x576</td>
<td>25, 30</td>
<td>RA</td>
</tr>
<tr>
<td>480p (EDTV), 720x480</td>
<td>50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>480i (SDTV), 720x480</td>
<td>25, 30</td>
<td>RA</td>
</tr>
</tbody>
</table>
Video conferencing

• **Basic requirements:**
 - Delay should be kept as low as possible
 - The preferable and maximum delay values should be less than 100 ms and 350 ms, respectively
 - Temporal (frame-rate) scalability;
 - Error robustness

• **Optional requirements:**
 - resolution and quality (SNR) scalability
Video conferencing

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Frame-rate, fps</th>
<th>Picture access mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080p, 1920x1080</td>
<td>15, 30</td>
<td>JFPIC</td>
</tr>
<tr>
<td>720p, 1280x720</td>
<td>30, 60</td>
<td>JFPIC</td>
</tr>
<tr>
<td>4CIF, 704x576</td>
<td>30, 60</td>
<td>JFPIC</td>
</tr>
<tr>
<td>4SIF, 704x480</td>
<td>30, 60</td>
<td>JFPIC</td>
</tr>
<tr>
<td>VGA, 640x480</td>
<td>30, 60</td>
<td>JFPIC</td>
</tr>
<tr>
<td>360p, 640x360</td>
<td>30, 60</td>
<td>JFPIC</td>
</tr>
<tr>
<td>SIF, 352x240</td>
<td>30</td>
<td>JFPIC</td>
</tr>
<tr>
<td>CIF, 352x288</td>
<td>30</td>
<td>JFPIC</td>
</tr>
<tr>
<td>QVGA, 320x240</td>
<td>15, 30</td>
<td>JFPIC</td>
</tr>
</tbody>
</table>
Video sharing

• **Basic requirements:**
 - Random access to pictures for downloaded video data
 - Temporal (frame-rate) scalability
 - Resolution and quality (SNR) scalability
 - Error robustness

• **Typical scenarios:**
 - GoPro camera
 - Cameras integrated into smartphones
Video sharing*

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Frame-rate, fps</th>
<th>Picture access mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>2160p (4K), 3840x2160</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>1440p (2K), 2560x1440</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>1080p, 1920x1080</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>720p, 1280x720</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>480p, 854x480</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>360p, 640x360</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>240p, 426x240</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
<tr>
<td>144p, 256x144</td>
<td>24, 25, 30, 48, 50, 60</td>
<td>RA</td>
</tr>
</tbody>
</table>

* - **Sources of these data:**
 - "Recommended upload encoding settings (Advanced)"
 https://support.google.com/youtube/answer/1722171?hl=en
 - "YouTube introduces 144p resolution on some videos"
 http://www.youtube.com/watch?v=2ZMkGbrB3c
Screencasting

• **Basic requirements:**
 - Support of a wide range of input video formats
 - RGB and YUV 4:4:4 in addition to YUV 4:2:0 and YUV 4:2:2
 - High visual quality
 - up to visually and mathematically lossless

• **Optional requirements:**
 - Error robustness
Screencasting

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Frame-rate, fps</th>
<th>Picture access mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input color format: RBG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WQXGA, 2560x1600</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>WUXGA, 1920x1200</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>WSXGA+, 1680x1050</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>WXGA, 1280x800</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>XGA, 1024x768</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>SVGA, 800x600</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>VGA, 640x480</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>Input color format: YUV 4:4:4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1440p (2K), 2560x1440</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>1080p, 1920x1080</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
<tr>
<td>720p, 1280x720</td>
<td>15, 30, 60</td>
<td>AI, RA, JFPIC</td>
</tr>
</tbody>
</table>
Game streaming

• **Basic requirements:**
 - Random access to pictures
 - Temporal (frame-rate) scalability
 - Error robustness

• **Optional requirements:**
 - Resolution and quality (SNR) scalability

• **Specific features:**
 - This content typically contains many sharp edges and large motion
Video monitoring / surveillance

• **Basic requirements:**
 - Random access to pictures for downloaded video data
 - Random Access Period (RAP) should be kept in the range of 1-5 seconds
 - Low-complexity encoder

• **Optional requirements:**
 - Support of high dynamic range
 - Temporal, resolution and quality (SNR) scalability
Video monitoring / surveillance

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Frame-rate, fps</th>
<th>Picture access mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>2160p (4K), 3840x2160</td>
<td>12</td>
<td>RA</td>
</tr>
<tr>
<td>5Mpixels, 2560x1920</td>
<td>12</td>
<td>RA</td>
</tr>
<tr>
<td>1080p, 1920x1080</td>
<td>25</td>
<td>RA</td>
</tr>
<tr>
<td>1.3Mpixels, 1280x960</td>
<td>25, 30</td>
<td>RA</td>
</tr>
<tr>
<td>720p, 1280x720</td>
<td>25, 30</td>
<td>RA</td>
</tr>
<tr>
<td>SVGA, 800x600</td>
<td>25, 30</td>
<td>RA</td>
</tr>
</tbody>
</table>
Requirements

• Basic requirements
• Optional requirements
Basic requirements

• **Coding efficiency / compression performance**
 - It should be better than for state-of-the-art video codecs such as HEVC/H.265 and VP9

• **Input source formats:**
 - Bit depth:
 - 8- and 10-bits per color component
 - Color sampling formats:
 - YUV 4:2:0, YUV 4:2:2

• **Coding delay**
 - Support of “low-delay” configurations
 - Delay should be up to 350 ms but its preferable value should be less than 100 ms
Basic requirements (cont’d)

• **Complexity**
 - Feasible real-time implementation of both an encoder and a decoder for hardware and software implementation based on a wide range of state-of-the-art platforms

• **Scalability**
 - Temporal (frame-rate) scalability

• **Error resilience**
 - Error resilience tools that are complementary to the error protection mechanisms implemented on transport level
Optional requirements

• **Input source formats:**
 - Bit depth:
 - up to 16-bits per color component
 - Color sampling formats:
 - YUV 4:4:4 and RGB
 - Support of auxiliary channel:
 - e.g., alpha channel
 - Support of high dynamic range

• **Scalability:**
 - Resolution and quality (SNR) scalability
 - Computational complexity scalability
 - Computational complexity is decreasing along with degrading picture quality
Optional requirements (cont’d)

- Complexity
 - Tools that enable parallel processing at both encoder and decoder sides are highly desirable for many applications
 - E.g., slices, tiles, wave front propagation processing
 - High-level multi-core parallelism
 - Encoder and decoder operation, especially entropy encoding and decoding, should allow multiple frames or sub-frame regions (e.g. 1D slices, 2D tiles, or partitions) to be processed concurrently, either independently or with deterministic dependencies that can be efficiently pipelined
 - Low-level instruction set parallelism
 - Favor algorithms that are SIMD/GPU friendly over inherently serial algorithms
Compression performance evaluation

• Methodology of compression performance evaluation

• Quality assessment
 ▪ Objective evaluation
 ▪ Subjective evaluation
Methodology of compression performance evaluation

• Requirements do not make sense if a way of how to check them is not defined
 ▪ In this draft, just a high-level evaluation framework is proposed
 □ Further details (e.g., a list of video sequences, concrete bit-rates, etc) should be described in a separate document
 ▪ The draft only encompasses an evaluation methodology for compression performance
 □ However, evaluation procedure should be proposed for each requirement if checking its fulfillment is not evident
Methodology of compression performance evaluation (cont’d)

The deviation between bit-rates of reference and tested codecs:

\[D = \text{abs} \left(\frac{BR_r - BR_t}{BR_r} \right) \cdot 100\% < D_{\text{THR}} \]

where \(BR_r \) and \(BR_t \) are bit-rates of reference and tested codecs

- Nominal value of bit-rate
- Value of bit-rate for the 1st codec
- Value of bit-rate for the 2nd codec

For obtaining an integral result in each range, Bjøntegaard Delta (BD)-rate should be computed
Quality assessment

- **Objective evaluation**
 - Peak Signal-to-Noise Ration (PSNR)
 - where B is the bit depth of source signal
 - R and T are original and reconstructed signals, respectively
 - Multiscale Structural Similarity (MS-SSIM)
 - $ssim(x_i, y_i) = [l(x_i, y_i)]^\alpha \cdot [c(x_i, y_i)]^\beta \cdot [s(x_i, y_i)]^\gamma$
 - $ssim(x_i, y_i) = \frac{[2\mu_{x_i}\mu_{y_i} + C_1](2\sigma_{x_iy_i} + C_2)}{[\mu^2_{x_i} + \mu^2_{y_i} + C_1][\sigma^2_{x_i} + \sigma^2_{y_i} + C_2]}$
 - $SSIM(X, Y) = \frac{1}{N} \sum_{i=1}^{N} ssim(x_i, y_i)$

$$PSNR = 20 \log \left(\frac{2^B - 1}{\sqrt{\frac{1}{MN} \sum_{y=1}^{M} \sum_{x=1}^{N} (R(x, y) - S(x, y))^2}} \right)$$
Quality assessment (cont’d)

- Subjective evaluation
 - Final and some intermediate decisions should be made using subjective evaluation
 - Mean Opinion Score (MOS)
 - MOS provides a numerical indication of the perceived quality of a picture or a picture sequence after a process such as compression, quantization, transmission and so on.
 - The MOS is expressed as a single number in the range 1 to 5 in the case of a discrete scale (resp., 1 to 100 in the case of a continuous scale)
 - where 1 is the lowest perceived quality, and 5 (resp., 100) is the highest perceived quality
 - Confidence interval can be calculated
 - Some outliers can be rejected
 - This rejection allows us to correct influences induced by the observer's behavior, or bad choice of test pictures or picture sequences
Conclusions

- This document contains
 - an overview of Internet video codec applications and typical use cases
 - a prioritized list of requirements for an Internet video codec

- An evaluation methodology for this codec is also proposed
 - We strongly recommend to the NETVC WG to include an evaluation framework into the requirements output document
 - Since in the previous meeting, one of the main goals was formulated as to be “better than state-of-the-art compression”, we suggest performing comparison with the reference model of HEVC/H.265
Thank You