
NFV Compute Acceleration APIs 
and Evaluation 

Bose Perumal 
Wenjing Chu 
R. Krishnan 
S. Hemalatha 

      Dell 
Peter Wills  

      BT 

draft-perumal-nfvrg-nfv-compute-acceleration-00.txt 



2 

NFV Compute Acceleration– Software Architecture 
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Compute  Acceleration for NFV 
•  Motivation 

–  Network functions are being virtualized. 
–  Networks packet based architecture provides scope for parallel processing. 
–  Parallel processing can be done in GPUs, Coprocessors like Intel Xeon Phi and multicore 

CPUs. 
–  Parallel processing happens (implicitly in HW) in implementations such as Intel QuickAssist 

etc. 

•  Generic Software Architecture and APIs 
–  Generic  software architecture provides the framework components 
–  APIs provides ease of adding network functions, traffic streams and directing traffic flow 

•  Evaluation 
–  Multi string matching on all incoming packets using Aho-Corasick algorithm 
–  Implementation in OpenCL to avoid hardware dependency. 
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Aho Corasick – Multistring matching Algorithm 
•  Aho Corasick Algorithm used for multistring matching 

–  Initial state machine is built with the keyword strings 
–  Input string is matched using the state machine 
–  Number of keyword strings do not have big impact on processing time. 
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Test Setup –Dell R720 with Nvidia Tesla K10 
•  Server 

–  Intel Xeon E5-2665 @2.40GHz 
–  2 processors with 16 cores each 
–  2.5MB Cache per core.  
–  RAM 96 GB 
–  1 PCIe x16 full length, full height slot 

which supports PCIe3.0. 

•  GPU Card 
–  Nvidia GPU Tesla K10 @745 MHz 
–  2 GPU processors with 1536 cores each 
–  8GB memory(4GB per processor) (256-

bit GDDR5)  
–  PCI 3.0 x16 interface 

•  Development Environment 
–  Linux distribution - Fedora 20 
–  Compiler  - OpenCL with Nvidia 6.0 

libraries  
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Complete Packet – Multi String Search 
 
 

Variable packet sizes – Average packet size 583 bytes 
Signature data base   -  Top 5000 website names 
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Complete Packet – Worst case  
0 string match 

Different Signature data bases   -  1000 / 2500 / 5000 website names 
Different Fixed packet sizes        -  64 / 583 / 1450 
Variable packet size with averages packet size  - 583 
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Results – GPU multi string matching 35% packets match 

•  Traffic generation and string matching 
–  Average packet size 583 
–  16384 packets batched for processing in GPU 
–  Each packet checked for 5000 strings(Aho Corasick state machine) 
–  35 % of packets matched 

•  Time for single batch processing 
–  Single copy time from CPU to GPU 0.923 milliseconds 
–  Execution time 4.38 milliseconds 
–  Result buffer copy from GPU to CPU 0.168 milliseconds 

•  Operations in one second 
–  464 iterations executed in one second 
–  7.6 million packets processed in one second 
–  33.02 Gbps processed in one second 
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Results – GPU multi string matching 0 packets match 

•  Traffic generation and string matching 
–  Average packet size 583 
–  16384 packets batched for processing in GPU 
–  Each packet checked for 5000 strings(Aho Corasick state machine) 
–  0 packet matched 

•  Time for single batch processing 
–  Single copy time from CPU to GPU 0.903 milliseconds 
–  Execution time 9.784 milliseconds 
–  Result buffer copy from GPU to CPU 0.161 milliseconds 

•  Operations in one second 
–  209 iterations executed in one second 
–  3.42 million packets processed in one second 
–  14.9 Gbps processed in one second 
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Portability 

•  Code written OpenCL is portable to different platforms only with 
makefile changes. 

•  Implementation tested in different platforms 
–  GPU based acceleration with baremetal Linux Server 
–  GPU based acceleration from Virtual Machine on Vmware Hypervisor 
–  Intel Xeon Phi based acceleration from baremetal Linux Server 
–  Intel Multicore CPU based acceleration on baremetal Linux Server 
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NFV Compute Acceleration API 

No API Description 
1 nca_add_network_function Add network function 

2 nca_traffic_stream_init  Add traffic stream and attach network functions 

3 nca_add_packets Add packets to buffer 

4 nca_buffer_ready Process packets 

5 notify_callback Event notification 

6 nca_read_results Read results 

•  Having a common API for NFV Compute Acceleration (NCA) can abstract the hardware details 
and enable NFV applications to use compute acceleration.  

•  API will be a C library, user can compile it along with their code. 
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Future Work 

•  Refining the APIs and adding more algorithms for network functions such as 
encryption/decryption and compression/decompression. 

•  Integration with I/O acceleration, like Intel DPDK, ODP etc. 

•  Verifying in additional platforms 

•  The final goal is to have a common API for SW or HW based acceleration 
schemes in a OpenDaylight/OpenStack/OPNFV framework. 
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Implemented Optimizations 
•  Variable size Packet Packing 

–  Multiple copies between CPU and GPU are costly. Variable size packets are packed into a single buffer.  
–  Initial portion of the buffer holds all the packet starting offsets, packet contents follow that. 

•  Pinned Memory 
–  Using pinned memory reduces copy time 3x 
–  Used pinned memory for CPU to GPU copy and GPU to CPU copy 

•  Scheduler for Pipe lining 
–  Written a scheduler to do pipelining with multiple command queues 

–  With 3 command queues we are able to hide 99% of copy time. 

•  Reducing GPU global memory access 
–  Reduce the GPU global memory access 

–  Copy to private memory if needed. Instead of byte by byte copy, copying 32 bytes using vload8 with float type. 

–  Move common structures to constant memory 

•  Organizing GPU cores 
–  If there are more memory accesses , overload number of kernels to hide the latency. 


