
NFV Compute Acceleration APIs
and Evaluation

Bose Perumal
Wenjing Chu
R. Krishnan
S. Hemalatha

 Dell
Peter Wills

 BT

draft-perumal-nfvrg-nfv-compute-acceleration-00.txt

2

NFV Compute Acceleration– Software Architecture

CPU	 Clnet	 Process	 (Runs	 in	 VM	 or	 Baremetal	 Linux)

Scheduler

Memory	
Manager

Copy	 Packet	
CPU	 to	 GPU

Launch	 GPU	
kernels

Copy	 Result	
from	 GPU

GPU	 Processing
(Runs	 in	 GPU)

GPU	 Kernels
K1	 K2	 K3	 …	 Kn

Network	 Function	
(AC	 DFA)	 Database

Input	 Buffer
P1	 	 P2	 P3	 ..	 Pn

Result	 Buffer
R1	 R2	 R3...Rn

Network	 Function	
(AC	 DFA)	 Database

Network	 Function
(example	 AC	 algo)	

Signature	 DB

CPU	 Packet	 I/O	 Library
(Runs	 in	 VM	 or	
Baremetal	 Linux)

pcap	 file	 based
Packet	 Generator

Packet	 I/ONIC

Results	 for	
each	 packet

Generic	 Framework	 functions/data

Service	 specific	 functions/data

CPU	 Process

GPU	 Process

3

Compute Acceleration for NFV
•  Motivation

–  Network functions are being virtualized.
–  Networks packet based architecture provides scope for parallel processing.
–  Parallel processing can be done in GPUs, Coprocessors like Intel Xeon Phi and multicore

CPUs.
–  Parallel processing happens (implicitly in HW) in implementations such as Intel QuickAssist

etc.

•  Generic Software Architecture and APIs
–  Generic software architecture provides the framework components
–  APIs provides ease of adding network functions, traffic streams and directing traffic flow

•  Evaluation
–  Multi string matching on all incoming packets using Aho-Corasick algorithm
–  Implementation in OpenCL to avoid hardware dependency.

4

Aho Corasick – Multistring matching Algorithm
•  Aho Corasick Algorithm used for multistring matching

–  Initial state machine is built with the keyword strings
–  Input string is matched using the state machine
–  Number of keyword strings do not have big impact on processing time.

5

Test Setup –Dell R720 with Nvidia Tesla K10
•  Server

–  Intel Xeon E5-2665 @2.40GHz
–  2 processors with 16 cores each
–  2.5MB Cache per core.
–  RAM 96 GB
–  1 PCIe x16 full length, full height slot

which supports PCIe3.0.

•  GPU Card
–  Nvidia GPU Tesla K10 @745 MHz
–  2 GPU processors with 1536 cores each
–  8GB memory(4GB per processor) (256-

bit GDDR5)
–  PCI 3.0 x16 interface

•  Development Environment
–  Linux distribution - Fedora 20
–  Compiler - OpenCL with Nvidia 6.0

libraries

6

Complete Packet – Multi String Search

Variable packet sizes – Average packet size 583 bytes
Signature data base - Top 5000 website names

7

Complete Packet – Worst case
0 string match

Different Signature data bases - 1000 / 2500 / 5000 website names
Different Fixed packet sizes - 64 / 583 / 1450
Variable packet size with averages packet size - 583

8

Results – GPU multi string matching 35% packets match

•  Traffic generation and string matching
–  Average packet size 583
–  16384 packets batched for processing in GPU
–  Each packet checked for 5000 strings(Aho Corasick state machine)
–  35 % of packets matched

•  Time for single batch processing
–  Single copy time from CPU to GPU 0.923 milliseconds
–  Execution time 4.38 milliseconds
–  Result buffer copy from GPU to CPU 0.168 milliseconds

•  Operations in one second
–  464 iterations executed in one second
–  7.6 million packets processed in one second
–  33.02 Gbps processed in one second

9

Results – GPU multi string matching 0 packets match

•  Traffic generation and string matching
–  Average packet size 583
–  16384 packets batched for processing in GPU
–  Each packet checked for 5000 strings(Aho Corasick state machine)
–  0 packet matched

•  Time for single batch processing
–  Single copy time from CPU to GPU 0.903 milliseconds
–  Execution time 9.784 milliseconds
–  Result buffer copy from GPU to CPU 0.161 milliseconds

•  Operations in one second
–  209 iterations executed in one second
–  3.42 million packets processed in one second
–  14.9 Gbps processed in one second

10

Portability

•  Code written OpenCL is portable to different platforms only with
makefile changes.

•  Implementation tested in different platforms
–  GPU based acceleration with baremetal Linux Server
–  GPU based acceleration from Virtual Machine on Vmware Hypervisor
–  Intel Xeon Phi based acceleration from baremetal Linux Server
–  Intel Multicore CPU based acceleration on baremetal Linux Server

11

NFV Compute Acceleration API

No API Description
1 nca_add_network_function Add network function

2 nca_traffic_stream_init Add traffic stream and attach network functions

3 nca_add_packets Add packets to buffer

4 nca_buffer_ready Process packets

5 notify_callback Event notification

6 nca_read_results Read results

•  Having a common API for NFV Compute Acceleration (NCA) can abstract the hardware details
and enable NFV applications to use compute acceleration.

•  API will be a C library, user can compile it along with their code.

12

Future Work

•  Refining the APIs and adding more algorithms for network functions such as
encryption/decryption and compression/decompression.

•  Integration with I/O acceleration, like Intel DPDK, ODP etc.

•  Verifying in additional platforms

•  The final goal is to have a common API for SW or HW based acceleration
schemes in a OpenDaylight/OpenStack/OPNFV framework.

 Dell - Restricted - Confidential

Thank You

 Dell - Restricted - Confidential

Backup Slides

15

Implemented Optimizations
•  Variable size Packet Packing

–  Multiple copies between CPU and GPU are costly. Variable size packets are packed into a single buffer.
–  Initial portion of the buffer holds all the packet starting offsets, packet contents follow that.

•  Pinned Memory
–  Using pinned memory reduces copy time 3x
–  Used pinned memory for CPU to GPU copy and GPU to CPU copy

•  Scheduler for Pipe lining
–  Written a scheduler to do pipelining with multiple command queues

–  With 3 command queues we are able to hide 99% of copy time.

•  Reducing GPU global memory access
–  Reduce the GPU global memory access

–  Copy to private memory if needed. Instead of byte by byte copy, copying 32 bytes using vload8 with float type.

–  Move common structures to constant memory

•  Organizing GPU cores
–  If there are more memory accesses , overload number of kernels to hide the latency.

